摘要:
A cardiac pacemaker programmed to pace in a demand mode with hysteresis is further programmed to recognize and correct a pacemaker mediated bradycardia. Such a pacemaker mediated bradycardia is the result of an idioventricular rhythm that occurs while hysteresis is operative and which inhibits the pacemaker from further pacing.
摘要:
A cardiac pacemaker programmed to pace in a demand mode with hysteresis is further programmed to recognize and correct a pacemaker mediated bradycardia. Such a pacemaker mediated bradycardia is the result of an idioventricular rhythm that occurs while hysteresis is operative and which inhibits the pacemaker from further pacing.
摘要:
A system and method for passively testing a cardiac pacemaker in which sensing signal amplitudes and lead impedance values are measured and stored while the pacemaker is functioning in its programmed mode. The amplitude and impedance data may be gotten and stored periodically at regular intervals to generate a historical record for diagnostic purposes. Sensing signal amplitudes may also be measured and stored from a sensing channel which is currently not programmed to be active as long as the pacemaker is physically configured to support the sensing channel. Such data can be useful in evaluating whether a switch in the pacemaker's operating mode is desirable.
摘要:
A cardiac rhythm management (CRM) system includes an implantable cardioverter defibrillator (ICD) and an external system. The ICD includes a plurality of functional modules performing tachyarrhythmia classification and therapy control functions using atrial tachyarrhythmia rate thresholds that are set to a unified value. In one embodiment, the CRM system allows a user to activate and deactivate each of the functional modules and program the unified value using the external system.
摘要:
A cardiac rhythm management (CRM) system includes an implantable cardioverter defibrillator (ICD) and an external system. The ICD detects a tachyarrhythmia episode and classifies the detected tachyarrhythmia episode using none, one, or more of detection enhancements selected according to a selection command including a classification mode. The detection enhancements are each an algorithm for detecting and analyzing one or more indications of a type of the detected tachyarrhythmia episode. The external system allows a user to select the classification mode from a plurality of available classification modes each using none, one, or more of the detection enhancements.
摘要:
An implantable pulse generator senses a cardiac signal, identifies cardiac events in the cardiac signal, and starts a blanking interval including a repeatable noise window blanking interval in response to each cardiac event. When noise is detected during the repeatable noise window blanking interval, the noise window blanking interval is repeated. In one embodiment, the duration of repeated repeatable noise window blanking intervals is summed and compared to a pacing escape interval. When the sum is greater than the pacing escape interval, asynchronous pacing pulses are delivered until the noise ceases. Alternatively, when the sum is greater than the pacing escape interval, the pace escape interval is repeated.
摘要:
A system and method for passively testing a cardiac pacemaker in which sensing signal amplitudes and lead impedance values are measured and stored while the pacemaker is functioning in its programmed mode. The amplitude and impedance data may be gotten and stored periodically at regular intervals to generate a historical record for diagnostic purposes. Sensing signal amplitudes may also be measured and stored from a sensing channel which is currently not programmed to be active as long as the pacemaker is physically configured to support the sensing channel. Such data can be useful in evaluating whether a switch in the pacemaker's operating mode is desirable.
摘要:
A system and method for passively testing a cardiac pacemaker in which sensing signal amplitudes and lead impedance values are measured and stored while the pacemaker is functioning in its programmed mode. The amplitude and impedance data may be gotten and stored periodically at regular intervals to generate a historical record for diagnostic purposes. Sensing signal amplitudes may also be measured and stored from a sensing channel which is currently not programmed to be active as long as the pacemaker is physically configured to support the sensing channel. Such data can be useful in evaluating whether a switch in the pacemaker's operating mode is desirable.
摘要:
Miniature defibrillators and cardioverters detect abnormal heart rhythms and automatically apply electrical therapy to restore normal heart function. Therapy decisions are typically based on the time between successive beats of various chambers of the heart, such as the left atrium and left ventricle. To prevent confusing a left ventricle beat for a left atrium beat, some devices use cross-chamber blanking, a technique which disables sensing of atrial beats for a certain time period after sensing. Conventionally, these devices lack any mechanism for adjusting length of this period. Accordingly, the inventor devised a implantable device including a mechanism for adjusting this time period. This mechanism ultimately allows tailoring of the cross-chamber blanking period to fit the needs of individual patients.
摘要:
An implantable pulse generator senses a cardiac signal, identifies cardiac events in the cardiac signal, and starts a blanking interval including a repeatable noise window blanking interval in response to each cardiac event. When noise is detected during the repeatable noise window blanking interval, the noise window blanking interval is repeated. In one embodiment, the duration of repeated repeatable noise window blanking intervals is summed and compared to a pacing escape interval. When the sum is greater than the pacing escape interval, asynchronous pacing pulses are delivered until the noise ceases. Alternatively, when the sum is greater than the pacing escape interval, the pace escape interval is repeated.