摘要:
The present invention is a method of earth orbit space transportation and return utilizing a reusable flyback satellite. A reusable flyback satellite is positioned to a desired release point which provides the capability of the satellite to achieve a desired orbit. The satellite is deployed from that release point. It is then injected into orbit. On-orbit function and services to a payload of the satellite are provided. The satellite is de-orbited, re-entered and landed with airplane-like functionality and utility.
摘要:
A reusable flyback satellite system comprises a refly apparatus and accelerating and positioning apparatus. The refly apparatus provides acceleration and injection into orbit, on-orbit functions services for supporting a payload, de-orbiting, re-entering and landing on a runway. The accelerating and positioning apparatus is attached to a carrier aircraft, the accelerating and positioning apparatus releaseably supporting the refly apparatus. The carrier aircraft positions the accelerating and positioning apparatus at a desired first position wherein the accelerating and positioning apparatus is detached from the carrier aircraft. Thereafter, the accelerating and positioning apparatus positions the refly apparatus to a second position wherein the refly apparatus is detachable from the accelerating and positioning apparatus. The second position is such that the refly apparatus can achieve a desired orbit.
摘要:
An air-breathing, propulsion-assisted projectile designed to be rocket or gun launched and capable of accelerating to hypersonic velocities includes a body having an encompassing cowl, an air compression section, an engine assembly located adjacent the air compression section, and a nozzle section located adjacent the engine assembly. The engine assembly includes apparatus for fuel storage and delivery to a combustion region. The rear end portion of the cowl is configured to direct the exiting combusted air-and-fuel mixture over the nozzle section of the body.
摘要:
A multi-constellation GNSS augmentation and assistance system may include a plurality of reference stations. Each reference station may be adapted to receive navigation data from a plurality of different global navigation satellite systems and to monitor integrity and performance data for each different global navigation satellite system. An operation center may receive the integrity and performance data transmitted from each of the plurality of reference stations. A communication network may transmit a message from the operation center to navcom equipment of a user for augmentation and assistance of the navcom equipment.