摘要:
The invention includes an apparatus 40, 140 for developing a latent charge image formed on a photoreceptor 36 disposed on an interior surface of a faceplate panel 12. The apparatus 40, 140 comprises a developer tank 42 having a sidewall 44 closed at one end by a bottom portion 46 and at the other end by a panel support 48 having an opening 50 therethrough to provide access to the faceplate panel 12. The back electrode 52 has a potential applied thereto to establish an electrostatic drift field between the back electrode and the photoreceptor 36, which is grounded. Triboelectrically-charged, dry-powdered, light emitting phosphor material, having a charge of the same polarity as the potential applied to the back electrode 52, is injected into the developer tank 42, between the back electrode 52 and the faceplate panel 12. The triboelectrically-charged phosphor material is directed toward the photoreceptor 36 on the faceplate panel 12 by the applied electrostatic drift field. Panel skirt sidewall shields 66, 68 are disposed around a peripheral sidewall 18 of the faceplate panel 12 to repel the triboelectrically-charged phosphor material from the panel sidewall 18.The method of developing the latent charge image formed on the photoreceptor 36 that is disposed on an interior surface of a faceplate panel 12 includes the steps of placing the faceplate panel 12 on the panel support 48 of the apparatus 40, 140 and positioning the panel skirt sidewall shield means 66, 68 in proximity to the sidewall 18 of the of the faceplate panel 12. The photoreceptor 36 is grounded and a potential is applied to the back electrode 52. Triboelectrically-charged phosphor materials, having a charge of the same polarity as the potential applied to the back electrode 52 are introduced into the developer tank 42, between the back electrode 52 and the faceplate panel 12. The phosphor material is directed toward the photoreceptor 36 on the faceplate panel 12 by the applied electrostatic drift field and repelled from the sidewall 18 of the faceplate panel by the panel skirt sidewall shields 66, 68.
摘要:
A liquid crystal display includes a liquid crystal display front end component (60) joined to a field emission device backlighting unit (50). The field emission device backlighting unit (50) includes a screen structure having a plurality of phosphor elements (33R, 33G, 33B) separated by a black matrix (39). The black matrix includes a metallic chrome layer. Spacers (15) separate the cathode (7) from the anode (4).
摘要:
The invention includes an apparatus 40 for developing a latent charge image formed on a photoreceptor 36 disposed on an interior surface of a faceplate panel 12. The apparatus 40 comprises a developer tank 42 having a sidewall 44 closed at one end by a bottom portion 46 and at the other end by a panel support 48 having an opening 50 therethrough to provide access to the faceplate panel 12. A back electrode 52 has a potential applied thereto to establish an electrostatic drift field between the back electrode and the photoreceptor 36, which is grounded. Triboelectrically-charged, dry-powdered, light emitting phosphor material, having a charge of the same polarity as the potential applied to the back electrode 52, is sprayed into the developer tank 42, between the back electrode 52 and the faceplate panel 12. The triboelectrically charged phosphor material is directed toward the photoreceptor 36 on the faceplate panel 12 by the applied electrostatic drift field. A bias shield 65 comprising two pairs of insulative shield members 66 and 68 disposed around a peripheral sidewall 18 of the faceplate panel 12. At least one conductive strip 72 is provided on one of the major surfaces of the shield members to repel the triboelectrically charged phosphor material from the panel sidewall 18 and to influence the deposition of the phosphor material on the photoreceptor, at the edge thereof. A method of developing the latent charge image utilizing the bias shield also is described.
摘要:
A RGB phosphor system for a carbon nanotube (CNT)/field emission device (FED) display operated between about 4-10 kV. The RGB phosphor system is formed on an interior surface of a screen of the CNT/FED display. The RGB phosphor system includes ZnS:Cu, Al (green phosphor), ZnS:Ag,Cl (blue phosphor) and Y2O2S:Eu+3 (red phosphor). The average particle size for each of the green, blue and red phosphors should be about 3-4 microns.
摘要:
A RGB phosphor system for a carbon nanotube (CNT)/field emission device (FED) display operated between about 4-10 kV. The RGB phosphor system is formed on an interior surface of a screen of the CNT/FED display. The RGB phosphor system includes ZnS:Cu, Al (green phosphor), ZnS:Ag,Cl (blue phosphor) and Y2O2S:Eu+3 (red phosphor). The average particle size for each of the green, blue and red phosphors should be about 3-4 microns.
摘要:
A liquid crystal display includes a liquid crystal display front end component joined to a field emission device backlighting unit. The field emission device backlighting unit has a cathode and an anode. The cathode is provided with a plurality of emitter cells. The anode is provided with a screen structure having a plurality of phosphor elements that are each formed as a substantially continuous stripe. Each of the phosphor elements has a plurality of the emitter cells aligned therewith.
摘要:
A luminescent display is provided that comprises: a plurality of individual phosphor elements (13) formed over a glass anode plate (11), and conductive segments (21) formed on each of the individual phosphor elements, wherein each of the conductive segments are electrically isolated from one another and have an anode potential (15) applied thereto.
摘要:
A color cathode-ray tube having an evacuated envelope with an electron gun therein for generating at least one electron beam is disclosed. The envelope further includes a faceplate panel having a luminescent screen with phosphor lines on an interior surface thereof. A tensioned focus mask, having a plurality of spaced-apart strands, is located adjacent to an effective picture area of the screen. The spacing between the strands defines a plurality of slots substantially parallel to the phosphor lines on the screen. Each of the strands has a substantially continuous insulating material layer formed on a screen-facing side thereof. A plurality of cross-wires are oriented substantially perpendicular to the plurality of strands and are bonded thereto by the insulating material layer. The plurality of cross-wires are bonded to busbars (located at opposite ends of the focus mask) with a resistive coating that has adhesive properties. The resistive coating is applied over and between each of the second conductive strands to bond them to the busbars and also to electrically isolate them from one another. A conductor is placed along a portion of at least one busbar to evenly distribute voltage to each strand through the resistive coating. The resistive coating is a composite material comprising an electrical conductor and an oxide mixed with at least one silicate glass.
摘要:
A luminescent display is provided that comprises: a plurality of individual phosphor elements (13) formed over a glass anode plate (11), and conductive segments (21) formed on each of the individual phosphor elements, wherein each of the conductive segments are electrically isolated from one another and have an anode potential (15) applied thereto.
摘要:
A display screen of a color display is disclosed (see FIG. 1). The display screen includes a glass plate having an array of three different color-emitting phosphors thereon. A graphite-based matrix is placed in the interstitial regions between each of the three different color-emitting phosphors. The graphite-based matrix is formed from an aqueous composition including graphite, potassium silicate and sodium silicate.