摘要:
An array of non-identical oscillators, driven by a common external driving force, is synchronized in phase. An example application is the phase synchronizing of non-identical vibratory gyroscopes to provide enhanced gyroscope sensitivity while minimizing the need for gyroscope proof mass alteration and individual gyroscope electronics.
摘要:
This invention exploits the synchronization properties of coupled, nonlinear oscillators arrays to perform power combining, beam steering, and beam shaping. This architecture utilizes interactions between nonlinear active elements to generate beam patterns. A nonlinear array integrates the signal processing concurrently with the transduction of the signal. This architecture differs fundamentally from passive transducer arrays in three ways: 1) the unit cells are nonlinear, 2) the array purposely couples the unit cells together, and 3) the signal processing (beam steering and shaping) is done via dynamic interactions between unit cells. The architecture extends to both 1- and 2-dimensional arrays.
摘要:
Certain spatio-temporal symmetries induce one array of a two-array coupled network of oscillators to oscillate at N times the frequency of the other array, where N is the number of oscillators in each array.
摘要:
The invention exploits the phenomenon of stochastic resonance in a nonlinear dynamic system to enhance the system's response to a weak periodic signal locally corrupted by background noise. The invention is designed to enhance the signal-to-noise ratio (SNR) in the system's output power spectrum at the periodic signal's frequency. This technique utilizes an array of nonlinear dynamic elements whose individual outputs are specifically coupled to other array elements. The coupling is found to substantially enhance the output SNR over what would be expected from a signal processor based upon a single such element. This principle has the potential to substantially enhance the performance of arrays of nonlinear devices; in fact, the nonlinear array can be expected to yield an output SNR that is very close to that obtainable by an array of ideal linear devices, so that the coupling actually "linearizes" the nonlinear system. The output SNR enhancement is found to correlate with enhanced signal detection performance.