摘要:
Connection cables for separable firing unit assemblies comprise a first mating connector at a first end and a second mating connector at a second, opposing end. A stripline cable electrically connects the first mating connector to the second mating connector. Separable firing unit assemblies comprise an initiation device. An electronics assembly is configured to transmit a firing pulse to the initiation device. One of a first mating connector and a second mating connector is coupled to the initiation device and the other of the first mating connector and the second mating connector is coupled to the electronics assembly. A second housing of the second mating connector is configured to receive a portion of a first housing of the first mating connector therein.
摘要:
A distributed ordnance system comprises a plurality of ordnance controllers and a plurality of firing units. Each ordnance controller of the plurality of ordnance controllers may be operably coupled with at least one firing unit of the plurality of firing units. Each ordnance controller may be configured to provide power signals to the at least one firing unit coupled therewith, and communicate with the at least one firing unit for initiation of an ordnance event. A multiple-stage ordnance system may comprise a first stage and a second stage that each include an ordnance controller configured to control operation of an ordnance event, and at least one firing unit to initiate the ordnance event. Related methods for constructing a multiple-stage ordnance control system and controlling initiation of an energetic material are also disclosed.
摘要:
A high voltage firing unit may comprise a high voltage converter, a capacitive discharge unit, and a control unit. The high voltage converter may be configured to generate a high voltage output signal from a lower voltage input signal. The capacitive discharge unit may be configured to store energy from the high voltage output signal across an energy storage device, and to discharge energy from the energy storage device in response to a fire control signal. The control unit operably may be configured to communicate with an external ordnance controller and control internal operations of the high voltage firing unit. An ordnance system, may comprise a high voltage firing unit and an ordnance controller configured to communicate data with the control unit and at least one power signal to the high voltage converter. A method for operating a high voltage firing unit is also disclosed.
摘要:
Connection cables for separable firing unit assemblies comprise a first mating connector at a first end and a second mating connector at a second, opposing end. A stripline cable electrically connects the first mating connector to the second mating connector. Separable firing unit assemblies comprise an initiation device. An electronics assembly is configured to transmit a firing pulse to the initiation device. One of a first mating connector and a second mating connector is coupled to the initiation device and the other of the first mating connector and the second mating connector is coupled to the electronics assembly. A second housing of the second mating connector is configured to receive a portion of a first housing of the first mating connector therein.
摘要:
A high voltage firing unit may comprise a high voltage converter, a capacitive discharge unit, and a control unit. The high voltage converter may be configured to generate a high voltage output signal from a lower voltage input signal. The capacitive discharge unit may be configured to store energy from the high voltage output signal across an energy storage device, and to discharge energy from the energy storage device in response to a fire control signal. The control unit operably may be configured to communicate with an external ordnance controller and control internal operations of the high voltage firing unit. An ordnance system, may comprise a high voltage firing unit and an ordnance controller configured to communicate data with the control unit and at least one power signal to the high voltage converter. A method for operating a high voltage firing unit is also disclosed.
摘要:
A distributed ordnance system comprises a plurality of ordnance controllers and a plurality of firing units. Each ordnance controller of the plurality of ordnance controllers may be operably coupled with at least one firing unit of the plurality of firing units. Each ordnance controller may be configured to provide power signals to the at least one firing unit coupled therewith, and communicate with the at least one firing unit for initiation of an ordnance event. A multiple-stage ordnance system may comprise a first stage and a second stage that each include an ordnance controller configured to control operation of an ordnance event, and at least one firing unit to initiate the ordnance event. Related methods for constructing a multiple-stage ordnance control system and controlling initiation of an energetic material are also disclosed.
摘要:
A safe and arm device includes a booster base assembly having a booster base housing and a barrier. The booster base housing includes a shaft port extending substantially in line with a longitudinal axis, at least three initiator ports disposed about the axis, and a matching number of explosive transfer paths in respective communication with the at least three initiator ports. The barrier includes a matching number of fire-train transfer ports and a drive shaft. The drive shaft of the barrier is coupled within the shaft port of the booster base housing allowing the barrier to be selectively rotationally positioned about the axis into at least one of a safe position and an arm and fire position, allowing the fire-train transfer ports to be substantially aligned with the explosive transfer paths when the barrier is positioned in the arm and fire position. A booster basket assembly is also provided.
摘要:
A safe and arm device includes a booster base assembly having a booster base housing and a barrier. The booster base housing includes a shaft port extending substantially in line with a longitudinal axis, at least three initiator ports disposed about the axis, and a matching number of explosive transfer paths in respective communication with the at least three initiator ports. The barrier includes a matching number of fire-train transfer ports and a drive shaft. The drive shaft of the barrier is coupled within the shaft port of the booster base housing allowing the barrier to be selectively rotationally positioned about the axis into at least one of a safe position and an arm and fire position, allowing the fire-train transfer ports to be substantially aligned with the explosive transfer paths when the barrier is positioned in the arm and fire position. A booster basket assembly is also provided.
摘要:
A safe and arm device includes a booster base assembly having a booster base housing and a barrier. The booster base housing includes a shaft port extending substantially in line with a longitudinal axis, at least three initiator ports disposed about the axis, and a matching number of explosive transfer paths in respective communication with the at least three initiator ports. The barrier includes a matching number of fire-train transfer ports and a drive shaft. The drive shaft of the barrier is coupled within the shaft port of the booster base housing allowing the barrier to be selectively rotationally positioned about the axis into at least one of a safe position and an arm and fire position, allowing the fire-train transfer ports to be substantially aligned with the explosive transfer paths when the barrier is positioned in the arm and fire position. A booster basket assembly is also provided.
摘要:
A flight safety assembly onboard an aerial vehicle includes a first sensor configured to sense first information related to flight of the aerial vehicle and a second sensor configured to sense second information related to the flight of the aerial vehicle. A sensor input is adapted to receive third information related to the flight of the aerial vehicle. A processor is operably coupled to the first sensor, the second sensor, and the sensor input. The processor is configured to determine three independent instantaneous impact points for the aerial vehicle by independently analyzing each of the first information, the second information and the third information. The processor is also configured to generate three independent onboard flight termination indicators for each of the three independent instantaneous impact points that intersects with a region to be protected.