摘要:
Improved responses can be generated to scan patterns (e.g., test patterns) for an electronic circuit designs having timing exception paths by more accurately determining the unknown values that propagate to observation points in the circuit, where the response is captured. For instance, the responses are determined more accurately by analyzing the effect of sensitizing a timing exception path during each time frame associated with a scan pattern. Path sensitization can be determined based on observing whether values injected at starting points of the timing exception paths due to signal transitions and glitches propagate to their end points. The response can be updated by masking the affected end points and propagating unknown values further in the circuit to determine whether they are captured at observation points of the circuit. For instance, the methods and systems described herein may result in reduced unknowns, improved test coverage and test compression.
摘要:
Improved responses can be generated to scan patterns (e.g., test patterns) for an electronic circuit designs having timing exception paths by more accurately determining the unknown values that propagate to observation points in the circuit, where the response is captured. For instance, the responses are determined more accurately by analyzing the effect of sensitizing a timing exception path during each time frame associated with a scan pattern. Path sensitization can be determined based on observing whether values injected at starting points of the timing exception paths due to signal transitions and glitches propagate to their end points. The response can be updated by masking the affected end points and propagating unknown values further in the circuit to determine whether they are captured at observation points of the circuit. For instance, the methods and systems described herein may result in reduced unknowns, improved test coverage and test compression.
摘要:
Improved responses can be generated to scan patterns (e.g., test patterns) for an electronic circuit design having timing exception paths by more accurately determining the unknown values that propagate to observation points in the circuit, where the response is captured. For instance, the responses are determined more accurately by analyzing the effect of sensitizing a timing exception path during each time frame associated with a scan pattern. Path sensitization can be determined based on observing whether values injected at starting points of the timing exception paths due to signal transitions and glitches propagate to their end points. The response can be updated by masking the affected end points and propagating unknown values further in the circuit to determine whether they are captured at observation points of the circuit. For instance, the methods and systems described herein may result in reduced unknowns, improved test coverage and test compression.
摘要:
Improved responses can be generated to scan patterns (e.g., test patterns) for an electronic circuit designs having timing exception paths by more accurately determining the unknown values that propagate to observation points in the circuit, where the response is captured. For instance, the responses are determined more accurately by analyzing the effect of sensitizing a timing exception path during each time frame associated with a scan pattern. Path sensitization can be determined based on observing whether values injected at starting points of the timing exception paths due to signal transitions and glitches propagate to their end points. The response can be updated by masking the affected end points and propagating unknown values further in the circuit to determine whether they are captured at observation points of the circuit. For instance, the methods and systems described herein may result in reduced unknowns, improved test coverage and test compression.
摘要:
Disclosed herein are exemplary methods, apparatus, and systems for performing timing-aware automatic test pattern generation (ATPG) that can be used, for example, to improve the quality of a test set generated for detecting delay defects or holding time defects. In certain embodiments, timing information derived from various sources (e.g. from Standard Delay Format (SDF) files) is integrated into an ATPG tool. The timing information can be used to guide the test generator to detect the faults through certain paths (e.g., paths having a selected length, or range of lengths, such as the longest or shortest paths). To avoid propagating the faults through similar paths repeatedly, a weighted random method can be used to improve the path coverage during test generation. Experimental results show that significant test quality improvement can be achieved when applying embodiments of timing-aware ATPG to industrial designs.
摘要:
Disclosed herein are exemplary methods, apparatus, and systems for performing timing-aware automatic test pattern generation (ATPG) that can be used, for example, to improve the quality of a test set generated for detecting delay defects or holding time defects. In certain embodiments, timing information derived from various sources (e.g. from Standard Delay Format (SDF) files) is integrated into an ATPG tool. The timing information can be used to guide the test generator to detect the faults through certain paths (e.g., paths having a selected length, or range of lengths, such as the longest or shortest paths). To avoid propagating the faults through similar paths repeatedly, a weighted random method can be used to improve the path coverage during test generation. Experimental results show that significant test quality improvement can be achieved when applying embodiments of timing-aware ATPG to industrial designs.
摘要:
Disclosed herein are exemplary methods, apparatus, and systems for performing timing-aware automatic test pattern generation (ATPG) that can be used, for example, to improve the quality of a test set generated for detecting delay defects or holding time defects. In certain embodiments, timing information derived from various sources (e.g. from Standard Delay Format (SDF) files) is integrated into an ATPG tool. The timing information can be used to guide the test generator to detect the faults through certain paths (e.g., paths having a selected length, or range of lengths, such as the longest or shortest paths). To avoid propagating the faults through similar paths repeatedly, a weighted random method can be used to improve the path coverage during test generation. Experimental results show that significant test quality improvement can be achieved when applying embodiments of timing-aware ATPG to industrial designs.
摘要:
Disclosed herein are exemplary methods, apparatus, and systems for performing timing-aware automatic test pattern generation (ATPG) that can be used, for example, to improve the quality of a test set generated for detecting delay defects or holding time defects. In certain embodiments, timing information derived from various sources (e.g. from Standard Delay Format (SDF) files) is integrated into an ATPG tool. The timing information can be used to guide the test generator to detect the faults through certain paths (e.g., paths having a selected length, or range of lengths, such as the longest or shortest paths). To avoid propagating the faults through similar paths repeatedly, a weighted random method can be used to improve the path coverage during test generation. Experimental results show that significant test quality improvement can be achieved when applying embodiments of timing-aware ATPG to industrial designs.
摘要:
Disclosed herein are exemplary methods, apparatus, and systems for performing timing-aware automatic test pattern generation (ATPG) that can be used, for example, to improve the quality of a test set generated for detecting delay defects or holding time defects. In certain embodiments, timing information derived from various sources (e.g. from Standard Delay Format (SDF) files) is integrated into an ATPG tool. The timing information can be used to guide the test generator to detect the faults through certain paths (e.g., paths having a selected length, or range of lengths, such as the longest or shortest paths). To avoid propagating the faults through similar paths repeatedly, a weighted random method can be used to improve the path coverage during test generation. Experimental results show that significant test quality improvement can be achieved when applying embodiments of timing-aware ATPG to industrial designs.
摘要:
Disclosed herein are exemplary methods, apparatus, and systems for performing timing-aware automatic test pattern generation (ATPG) that can be used, for example, to improve the quality of a test set generated for detecting delay defects or holding time defects. In certain embodiments, timing information derived from various sources (e.g. from Standard Delay Format (SDF) files) is integrated into an ATPG tool. The timing information can be used to guide the test generator to detect the faults through certain paths (e.g., paths having a selected length, or range of lengths, such as the longest or shortest paths). To avoid propagating the faults through similar paths repeatedly, a weighted random method can be used to improve the path coverage during test generation. Experimental results show that significant test quality improvement can be achieved when applying embodiments of timing-aware ATPG to industrial designs.