Abstract:
A flame simulating assembly including a simulated fireplace having a flame image subassembly for providing images of flames and one or more light sources configured to provide light having an intensity. The flame simulating assembly also includes a controller for controlling the simulated fireplace, and an ambient light sensor positioned outside the simulated fireplace for sensing ambient light intensity. The controller is configured to increase or decrease the intensity of the light provided by the light source upon receipt of signals from the ambient light sensor.
Abstract:
A method of forming a simulated combustible fuel element including covering at least a part of a surface of a master with a material selected to produce a mold, and then removing the master from the mold. A predetermined amount of a liquefied body material that is less than a volume of the mold is introduced into the mold. A body including the body material is produced with one or more cavities therein and an exterior surface simulating at least the part of the surface of the master. The body material is allowed to solidify, at least to the extent that the body material is self-supporting, and the mold and the body are separated. One or more fuel light sources are positioned to direct light therefrom in the cavity. At least a portion of the exterior surface is coated so that the portion simulates a combustible fuel element.
Abstract:
A flame simulating assembly including a light source, a screen having a translucent region which subjects light from the light source transmitted therethrough to diffusion and a transparent region, and a flicker element for intermittently reflecting the light from the light source toward the screen, to provide images of flames in a predetermined portion thereof. The screen includes a fringe region positioned between the translucent region and the transparent region. The fringe region includes a number of diffusing areas for diffusing the light from the light source and a number of transparent areas positioned between the diffusing areas, to at least partially provide images of flames in the diffusing areas.
Abstract:
A method of controlling a heat-generating element that generates heat when electric current is passed therethrough to control an ambient temperature within a space in which a sensor for sensing temperatures is at least partially located. The method includes sensing an initial temperature, and permitting passage of the electric current through the heat-generating element at 100 percent output for a preselected initial time period. After the electric current has passed through the heat-generating element for the preselected initial time period, a second temperature is sensed. A first temperature difference between the initial temperature and the second temperature is determined. A maximum error between a sensed temperature sensed at a selected time after the initial time period, and the ambient temperature at the selected time, is determined in accordance with a predetermined relationship between the first temperature difference and the maximum error.
Abstract:
A method of controlling a heat-generating element that generates heat when electric current is passed therethrough to control an ambient temperature within a space in which a sensor for sensing temperatures is at least partially located. The method includes sensing an initial temperature, and permitting passage of the electric current through the heat-generating element at 100 percent output for a preselected initial time period. After the electric current has passed through the heat-generating element for the preselected initial time period, a second temperature is sensed. A first temperature difference between the initial temperature and the second temperature is determined. A maximum error between a sensed temperature sensed at a selected time after the initial time period, and the ambient temperature at the selected time, is determined in accordance with a predetermined relationship between the first temperature difference and the maximum error.
Abstract:
A method of forming a simulated combustible fuel element including covering at least a part of a surface of a master with a material selected to produce a mold, and then removing the master from the mold. A predetermined amount of a liquefied body material that is less than a volume of the mold is introduced into the mold. A body including the body material is produced with one or more cavities therein and an exterior surface simulating at least the part of the surface of the master. The body material is allowed to solidify, at least to the extent that the body material is self-supporting, and the mold and the body are separated. One or more fuel light sources are positioned to direct light therefrom in the cavity. At least a portion of the exterior surface is coated so that the portion simulates a combustible fuel element.
Abstract:
A flame simulating assembly including one or more light sources, a screen to which the light from the light source is directed, to provide images of flickering flames thereon, and a rotatable flicker element. The flicker element includes a rod defined by an axis and a number of paddle elements located in respective predetermined locations on the rod. Each paddle element includes one or more body portions having one or more reflective surfaces thereon. The reflective surface includes a central region and a perimeter region substantially defining a perimeter plane at least partially located around the central region. Each perimeter plane is substantially parallel to the axis. The light from the light source is reflected intermittently to respective predetermined regions on the screen.
Abstract:
A flame simulating assembly including one or more light sources, a screen to which the light from the light source is directed, to provide images of flickering flames thereon, and a rotatable flicker element. The flicker element includes a rod defined by an axis and a number of paddle elements located in respective predetermined locations on the rod. Each paddle element includes one or more body portions having one or more reflective surfaces thereon. The reflective surface includes a central region and a perimeter region substantially defining a perimeter plane at least partially located around the central region. Each perimeter plane is substantially parallel to the axis. The light from the light source is reflected intermittently to respective predetermined regions on the screen.