摘要:
Embodiments described herein relate to an optical fiber stretch that may experience forward Raman amplification in which the peak optical signal power occurs at some distance from the transmitter. Smaller effective area optical fiber is used at a portion of the optical fiber stretch in which the optical signal power is increasing, while larger effective area optical fiber is used at a more remote stretch of the optical fiber stretch that experiences the peak optical signal power. Thus, the quality of the signal is better preserved since the larger effective area fiber reduces maximum optical signal density thereby reducing non-linear degradations on signal quality.
摘要:
An optical communication system includes a gain medium that receives optical signal(s) of one or more optical signal wavelengths. The system also includes pump source(s) that are capable of generating at least a first pump signal and a second pump signal. The first pump signal includes at least one integer Raman order wavelength that includes a Raman gain peak that is one stokes shift away from at least one of the one or more optical signal wavelengths. The second pump signal includes at least one fractional Raman order pump wavelength that includes a Raman gain peak that is a non-integer multiple of a stokes shift from each of the one or more optical signal wavelengths. Optionally, there might be one or more other pump signals that do not satisfy the criteria specified for the first pump signal or the second pump signal.
摘要:
A method of communicating an optical signal includes generating an optical signal at a bit rate of at least 2.5 Gb/s. The optical signal including at least thirty optical channels. In one particular embodiment, at least some of the thirty optical channels reside within a 1567-1620 nanometer wavelength range. The method also includes receiving the optical signal at a ROPA that includes a rare-earth doped optical fiber. In addition, the method includes introducing a pump signal to a communication span of the unrepeatered optical communication system. The pump signal operable to amplify the optical signal by Raman amplification within the communication span and including at least one pump signal wavelength operable to excite the rare-earth doped fiber. The method further includes receiving the optical signal after the optical signal has traversed at least 200 kilometers of the communication span.
摘要:
An optical communication system includes a gain medium that is capable of receiving at least one optical signal that includes one or more optical signal wavelengths. The system also includes one or more pump sources that are capable of generating at least one pump signal for introduction to the gain medium. The pump signal includes one or more fractional Raman order pump wavelengths having a Raman gain peak that is a non-integer multiple of one stokes shift from each of the one or more optical signal wavelengths. In one particular embodiment, the pump signal interacts with the optical signal as the pump signal traverses at least a portion of the gain medium.
摘要:
An optical communication system includes a transmission fiber that is operable to receive at least one optical signal and at least one pump signal. The optical signal includes one or more optical signal wavelengths and a power level at approximately a minimum threshold power level. The pump signal co-propagates with at least a portion of the optical signal over at least a portion of the transmission fiber. In one particular embodiment, the pump signal operates to amplify the optical signal to approximately a maximum threshold power level as the pump signal and the optical signal traverse the portion of the transmission fiber.
摘要:
Embodiments described herein relate to an optical fiber stretch that may experience forward Raman amplification in which the peak optical signal power occurs at some distance from the transmitter. Smaller effective area optical fiber is used at a portion of the optical fiber stretch in which the optical signal power is increasing, while larger effective area optical fiber is used at a more remote stretch of the optical fiber stretch that experiences the peak optical signal power. Thus, the quality of the signal is better preserved since the larger effective area fiber reduces maximum optical signal density thereby reducing non-linear degradations on signal quality.
摘要:
A method of communicating an optical signal includes generating an optical signal at a bit rate of at least 2.5 Gb/s. The optical signal including at least thirty optical channels. In one particular embodiment, at least some of the thirty optical channels reside within a 1567-1620 nanometer wavelength range. The method also includes receiving the optical signal at a ROPA that includes a rare-earth doped optical fiber. In addition, the method includes introducing a pump signal to a communication span of the unrepeatered optical communication system. The pump signal operable to amplify the optical signal by Raman amplification within the communication span and including at least one pump signal wavelength operable to excite the rare-earth doped fiber. The method further includes receiving the optical signal after the optical signal has traversed at least 200 kilometers of the communication span.
摘要:
A method of communicating an optical signal includes generating an optical signal at a bit rate of at least 2.5 Gb/s. The optical signal including at least thirty optical channels. In one particular embodiment, at least some of the thirty optical channels reside within a 1567-1620 nanometer wavelength range. The method also includes receiving the optical signal at a ROPA that includes a rare-earth doped optical fiber. In addition, the method includes introducing a pump signal to a communication span of the unrepeatered optical communication system. The pump signal operable to amplify the optical signal by Raman amplification within the communication span and including at least one pump signal wavelength operable to excite the rare-earth doped fiber. The method further includes receiving the optical signal after the optical signal has traversed at least 200 kilometers of the communication span.
摘要:
An optical receiver including a plurality of time delay elements and threshold decision elements configured to receive a signal representative of an optical signal. Each of the time delay elements is configured to impart an associated time delay to the signal. Each of the threshold decision elements is configured to compare the signal to a plurality of threshold levels. Each decision element outputs a signal indicative of a probability that a particular pulse of the received signal is a binary one at its associated sampling time. An optical communication system and a method of detecting a received data signal in an optical communication system are also provided.
摘要:
An optical amplifier includes at least one amplification stage having a saturation recovery time of less than one (1) millisecond. The amplification stage includes a gain medium operable to receive at least one pump signal and to receive from a multiple span communication link an optical signal comprising a leading edge. The at least one pump signal and the optical signal travel in the same direction at approximately the same speed through at least a portion of the gain medium. In one particular embodiment the leading edge of the optical signal after passing through a plurality of amplifiers when received by a receiver coupled to the communication link comprises a peak power that is no more than ten times the average power of the optical signal at the receiver.