Abstract:
A method of spectrally multiplexing diode pump modules to increase brightness includes generating one or more pump beams from respective diode lasers at a first wavelength in a diode laser package, generating one or more pump beams from respective diode lasers at a second wavelength different from the first wavelength in the diode laser package, wavelength combining at least one of the pump beams at the first wavelength with at least one of the pump beams at the second wavelength to form one or more combined pump beams, and receiving the combined pump beams in a pump fiber coupled to the diode laser package. Laser systems can include multi-wavelength pump modules and a gain fiber having a core actively doped so as to have an absorption spectrum corresponding to the multiple wavelength, the gain fiber situated to receive the pump light and to produce an output beam at an output wavelength.
Abstract:
To solve the problem that the power consumption of optical amplifiers is not optimized over the life time of an amplifier, the optical amplifier includes a gain medium for amplifying a plurality of optical channels, the gain medium including a plurality of cores through which the plurality of optical channels to propagate respectively and a cladding area surrounding the plurality of cores, a monitor that monitors the temperature of the optical amplifier and producing a monitoring result, a first light source that emits a first light beam to excite the cladding area, a second light source that emits a plurality of second light beams to excite each of the plurality of cores individually, and a controller that controls the first light source and the second light source based on the produced monitoring result.
Abstract:
Aspects of an optical communications network are described that include two or more optical fibers arranged to allow communication in the same or in opposite directions. The optical network includes a first optical amplifier coupled to the first optical fiber, a second optical amplifier coupled to the second optical fiber, and an optical coupler that allows excess optical power from the first optical fiber to be provided for amplification of signals traversing the second optical fiber. The disclosed systems and devices thus enable excess power from one channel to be utilized to enable amplification of signals traveling on a different channel.
Abstract:
A Raman pumping arrangement for amplifying a data optical signal (40) has a Raman pump (12) for generating a Raman pump signal (44;45), an optical supervisory channel receiver (14) for receiving an optical supervisory channel signal (42) an amplification fiber (15) arranged such that the data optical signal (40), the optical supervisory channel signal (42), and the Raman pump signal (44;45) are transmitted therethrough; and a control unit (13) configured for controlling the operation of the Raman pump (12); wherein the control unit (13) is configured for setting the Raman pump (12) in an operation mode or a start-up mode; wherein in the operation mode, the Raman pump (12) provides an operation pumping power (120), and wherein in the start-up mode, the Raman pump (12) provides a start-up pumping power (122).
Abstract:
An optical crystal can be mounted to a mounting block configured to receive the crystal. A base portion on the mounting block utilizes two walls forming a corner and a single biasing spring clip to secure the crystal. The spring clip applies forces in two different directions substantially orthogonal to the two walls. The spring clip is based off a symmetrical geometry which applies nearly the same force application in both directions. The spring also features bend regions that contact the crystal in such a way as to reduce the presence of point loads or stress risers. The length of contact along the crystal is maximized, allowing for proper force distribution and a sufficient surface are contact for static holding capabilities.
Abstract:
A method includes applying a boost pump signal to a pump laser of a laser system based on a preceding off duration associated with the laser system, and applying a forward pump signal to the pump laser. A laser system includes a seed laser situated to generate seed optical pulses, a pump laser situated to generate pump optical radiation, a fiber amplifier situated to receive the pump optical radiation and the seed optical pulses, and a controller situated to select a pump boost duration or pump boost magnitude based on an off duration associated with the laser system.
Abstract:
A method of spectrally multiplexing diode pump modules to increase brightness includes generating one or more pump beams from respective diode lasers at a first wavelength in a diode laser package, generating one or more pump beams from respective diode lasers at a second wavelength different from the first wavelength in the diode laser package, wavelength combining at least one of the pump beams at the first wavelength with at least one of the pump beams at the second wavelength to form one or more combined pump beams, and receiving the combined pump beams in a pump fiber coupled to the diode laser package. Laser systems can include multi-wavelength pump modules and a gain fiber having a core actively doped so as to have an absorption spectrum corresponding to the multiple wavelength, the gain fiber situated to receive the pump light and to produce an output beam at an output wavelength.
Abstract:
A laser light-source apparatus includes; a seed light source; a fiber amplifier configured to amplify pulse light output from the seed light source based on gain switching; a solid state amplifier configured to further amplify the resultant pulse light; a nonlinear optical element configured to perform wavelength conversion on the pulse light output from the solid state amplifier; an optical switching element that is disposed between the fiber amplifier and the solid state amplifier and is configured to remove ASE noise; and a control unit. The control unit is configured to control the optical switching element in such a manner that propagation of light is permitted in an output period of the pulse light from the seed light source, and is stopped in a period other than the output period.
Abstract:
A method includes applying a boost pump signal to a pump laser of a laser system based on a preceding off duration associated with the laser system, and applying a forward pump signal to the pump laser. A laser system includes a seed laser situated to generate seed optical pulses, a pump laser situated to generate pump optical radiation, a fiber amplifier situated to receive the pump optical radiation and the seed optical pulses, and a controller situated to select a pump boost duration or pump boost magnitude based on an off duration associated with the laser system.
Abstract:
A planar optical waveguide amplifier includes an active optical waveguide (203) containing rare-earth ions embedded in a passive optical waveguide (202) that guides the pump power.