Abstract:
A method for inserting a first audio signal into a bitstream which comprises a downmix signal and associated bitstream metadata is described. The downmix signal and associated bitstream metadata are indicative of an audio program comprising a plurality of spatially diverse audio signals. The downmix signal comprises at least one audio channel and the bitstream metadata comprise upmix metadata for reproducing the plurality of spatially diverse audio signals from the at least one channel. The method comprises mixing the first audio signal with the at least one audio channel to generate a modified downmix signal. The method further comprises generating an output bitstream comprising the modified downmix signal and the associated modified bitstream metadata indicative of a modified audio program comprising a plurality of modified spatially diverse audio signals.
Abstract:
An audio encoder configured to encode an audio signal to generate a bitstream having E-AC-3 format, including by determining a first control parameter indicative of an allocation of available mantissa bits for quantized audio content of the signal. The encoder is configured to perform transcoding simulation to determine a second control parameter in a manner based at least in part on statistical analysis of results of E-AC-3 bit allocation processing of audio data assuming a first target data rate, and of AC-3 bit allocation processing of the data assuming a second target data rate, and to include the second control parameter in the bitstream for use by a converter to convert the bitstream into a second bitstream having AC-3 format at the second target data rate. Other aspects are converters configured to perform transcoding on a bitstream using such a second control parameter, and methods performed by any embodiment of the inventive encoder or converter.
Abstract:
The present document relates to audio encoding/decoding. In particular, the present document relates to a method and system for reducing the complexity of a bit allocation process used in the context of audio encoding/decoding. An audio encoder (300) configured to encode an audio signal according to a first audio codec system is described. The audio encoder (300) comprises a transform unit (302) configured to determine a set of spectral coefficients (312) based on the audio signal. Furthermore, the encoder (300) comprises a floating-point encoding unit (304) configured to determine a set of scale factors and a set of scaled values (314), based on the set of spectral coefficients (312); and to encode the set of scale factors to yield a set of encoded scale factors (313). In addition, the encoder (300) comprises a bit allocation and quantization unit (305, 306) configured to determine a total number of available bits for quantizing the set of scaled values (314), based on a first target data-rate and based on the number of bits used for the set of encoded scale factors (313); to determine a first control parameter (315) indicative of an allocation of the total number of available bits for quantizing the scaled values of the set of scaled values (314); and to quantize the set of scaled values (314) in accordance to the first control parameter (315) to yield a set of quantized scaled values (317). Furthermore, the encoder (300) comprises a transcoding simulation unit (320) configured to determine a second control parameter (321) based on the first control parameter (315); wherein the second control parameter (321) enables a transcoder to convert the first bitstream into a second bitstream at a second target data-rate; wherein the second bitstream accords to a second audio codec system different from the first audio codec system; and wherein the first bitstream comprises the second control parameter.
Abstract:
An audio encoder configured to encode an audio signal to generate a bitstream having E-AC-3 format, including by determining a first control parameter indicative of an allocation of available mantissa bits for quantized audio content of the signal. The encoder is configured to perform transcoding simulation to determine a second control parameter in a manner based at least in part on statistical analysis of results of E-AC-3 bit allocation processing of audio data assuming a first target data rate, and of AC-3 bit allocation processing of the data assuming a second target data rate, and to include the second control parameter in the bitstream for use by a converter to convert the bitstream into a second to bitstream having AC-3 format at the second target data rate. Other aspects are converters configured to perform transcoding on a bitstream using such a second control parameter, and methods performed by any embodiment of the inventive encoder or converter.
Abstract:
An audio processing method may involve receiving media input audio data corresponding to a media stream and headphone microphone input audio data, determining a media audio gain for at least one of a plurality of frequency bands of the media input audio data and determining a headphone microphone audio gain for at least one of a plurality of frequency bands of the headphone microphone input audio data. Determining the headphone microphone audio gain may involve determining a feedback risk control value, for at least one of the plurality of frequency bands, corresponding to a risk of headphone feedback between at least one external microphone of a headphone microphone system and at least one headphone speaker and determining a headphone microphone audio gain that will mitigate actual or potential headphone feedback in at least one of the plurality of frequency bands, based at least partly upon the feedback risk control value.
Abstract:
The present document relates to audio encoding/decoding. In particular, the present document relates to a method and system for improving the quality of encoded multi-channel audio signals. An audio encoder configured to encode a multi-channel audio signal according to a total available data-rate is described. The multi-channel audio signal is representable as a basic group (121) of channels for rendering the multi-channel audio signal in accordance to a basic channel configuration, and as an extension group (122) of channels, which—in combination with the basic group (122)—is for rendering the multi-channel audio signal in accordance to an extended channel configuration. The basic channel configuration and the extended channel configuration are different from one another.
Abstract:
The present document relates to audio encoding/decoding. In particular, the present document relates to a method and system for reducing the complexity of a bit allocation process used in the context of audio encoding/decoding. An audio encoder (300) configured to encode an audio signal according to a first audio codec system is described. The audio encoder (300) comprises a transform unit (302) configured to determine a set of spectral coefficients (312) based on the audio signal. Furthermore, the encoder (300) comprises a floating-point encoding unit (304) configured to determine a set of scale factors and a set of scaled values (314), based on the set of spectral coefficients (312); and to encode the set of scale factors to yield a set of encoded scale factors (313).
Abstract:
The present document relates to audio encoding/decoding. In particular, the present document relates to a method and system for improving the quality of encoded multi-channel audio signals. An audio encoder configured to encode a multi-channel audio signal according to a total available data-rate is described. The multi-channel audio signal is representable as a basic group (121) of channels for rendering the multi-channel audio signal in accordance to a basic channel configuration, and as an extension group (122) of channels, which—in combination with the basic group (122)—is for rendering the multi-channel audio signal in accordance to an extended channel configuration. The basic channel configuration and the extended channel configuration are different from one another.