摘要:
A charge stored in a battery is estimated by multiplying estimated charge currents supplied during charge phases and estimated discharge currents discharged during operational modes by the respective amounts of time of charging and discharge. The state of charge of the battery is calculated from the estimated stored charge. Furthermore, parameters of the battery may be measured to be used to adjust the estimated state of charge of the battery. In a first case, the estimated stored charge may be adjusted to a charge value corresponding to the detected completion of a constant current charge phase. In a second case, the estimated stored charge may be adjusted to a charge value corresponding to the detected completion of a constant voltage charge phase. In a third case, the estimated stored charge may be adjusted to a charge value corresponding to a detected predetermined discharge level of the battery.
摘要:
Methods and systems for power and charging control in a Bluetooth headset are disclosed and may include measuring a load current during charging of batteries in a mobile device. A completion time of the charging may be predicted. The charging may be terminated based on a sum of the load current and a known charge complete threshold current of the batteries, which may include lithium batteries. A current or voltage source may be controlled for the charging. A current from the current source may be compared to the sum via a current comparator. A rate of charging may be controlled for charging to a desired end voltage based on the predicted completion time. A user preference based on the predicted completion time may be stored, where the user preference may be utilized to control one or more subsequent charges.
摘要:
An electronic device includes a rechargeable battery, an electrical circuit, a battery safety circuit, and a power down mode circuit. The electrical circuit is configured to generate a power mode control signal. The power down mode circuit receives the power mode control signal. If the power mode control signal has a first value, the power down mode circuit is configured to force a voltage at a first port of the battery safety circuit to a voltage value that is less than an under voltage lock out (UVLO) threshold value of the battery safety circuit to transition the electronic device from a normal operating mode to a low current power down mode. The electronic device may further include a wake up mode circuit.
摘要:
An electronic device includes a rechargeable battery, an electrical circuit, a battery safety circuit, and a power down mode circuit. The electrical circuit is configured to generate a power mode control signal. The power down mode circuit receives the power mode control signal. If the power mode control signal has a first value, the power down mode circuit is configured to force a voltage at a first port of the battery safety circuit to a voltage value that is less than an under voltage lock out (UVLO) threshold value of the battery safety circuit to transition the electronic device from a normal operating mode to a low current power down mode. The electronic device may further include a wake up mode circuit.
摘要:
Herein described are at least methods and systems to control power dissipation while charging a device. In a representative embodiment, the method comprises first monitoring a first voltage output by a charger used for said charging a battery of a device, second monitoring a second voltage at the battery, first determining a first current based on a power dissipation value associated with the device, the first voltage, and the second voltage, second determining a minimum of the first current and a second current, wherein the second current equals the maximum charging current during a typical charge cycle of the device, and applying a control signal to a control circuit to generate the minimum, wherein the control circuit is communicatively coupled to the charger at a first port, and the battery at a second port. An exemplary system comprises one or more circuits operable for, at least performing the aforementioned method.
摘要:
An electronic device includes a rechargeable battery, an electrical circuit, a battery safety circuit, and a power down mode circuit. The electrical circuit is configured to generate a power mode control signal. The power down mode circuit receives the power mode control signal. If the power mode control signal has a first value, the power down mode circuit is configured to force a voltage at a first port of the battery safety circuit to a voltage value that is less than an under voltage lock out (UVLO) threshold value of the battery safety circuit to transition the electronic device from a normal operating mode to a low current power down mode. The electronic device may further include a wake up mode circuit.
摘要:
Techniques are provided for selecting a charge current to be sunk by a mobile electronic device. A charging device is received at a connector of the mobile electronic device. The charging device is configured to supply a charge current to a rechargeable battery of the mobile electronic device. One or more data signals is/are received from the charging device at an interface circuit of the mobile electronic device on one or more data signal lines through the connector. One or more control signals are applied to the interface circuit to enable data signal values to be generated for the data signal(s) based on the control signal(s) and a type of the charging device. The data signal values are mapped to a maximum charge current for the rechargeable battery. The charge current supplied by the charging device to the rechargeable battery is limited to the selected maximum charge current.
摘要:
Techniques are provided for selecting a charge current to be sunk by a mobile electronic device. A charging device is received at a connector of the mobile electronic device. The charging device is configured to supply a charge current to a rechargeable battery of the mobile electronic device. One or more data signals is/are received from the charging device at an interface circuit of the mobile electronic device on one or more data signal lines through the connector. One or more control signals are applied to the interface circuit to enable data signal values to be generated for the data signal(s) based on the control signal(s) and a type of the charging device. The data signal values are mapped to a maximum charge current for the rechargeable battery. The charge current supplied by the charging device to the rechargeable battery is limited to the selected maximum charge current.
摘要:
Herein described are at least methods and systems to control power dissipation while charging a device. In a representative embodiment, the method comprises first monitoring a first voltage output by a charger used for said charging a battery of a device, second monitoring a second voltage at the battery, first determining a first current based on a power dissipation value associated with the device, the first voltage, and the second voltage, second determining a minimum of the first current and a second current, wherein the second current equals the maximum charging current during a typical charge cycle of the device, and applying a control signal to a control circuit to generate the minimum, wherein the control circuit is communicatively coupled to the charger at a first port, and the battery at a second port. An exemplary system comprises one or more circuits operable for, at least performing the aforementioned method.
摘要:
An electronic device includes a rechargeable battery, an electrical circuit, a battery safety circuit, and a power down mode circuit. The electrical circuit is configured to generate a power mode control signal. The power down mode circuit receives the power mode control signal. If the power mode control signal has a first value, the power down mode circuit is configured to force a voltage at a first port of the battery safety circuit to a voltage value that is less than an under voltage lock out (UVLO) threshold value of the battery safety circuit to transition the electronic device from a normal operating mode to a low current power down mode. The electronic device may further include a wake up mode circuit.