Abstract:
A valve having a valve body, a rotary valve member, a valve handle, and a selectively repositionable valve handle stop member. The valve body includes first and second openings into which the stop member may be installed. The openings are provided on opposite sides of the lower end of the valve handle such that, when the stop member is installed in the first opening, the valve handle is rotated in a first direction between a first orientation, which corresponds to the valve member being full open, and a second orientation, which corresponds to the valve member being full closed. Alternatively, when the stop member is installed in the second opening, the valve handle is rotated in a second, opposite direction to move the valve member from the full open to the full closed position. When no stop member is installed, the valve member is sequentially moved from the full closed position, to the full open position, and then to the full closed position as the valve handle traverses a 180° arc.
Abstract:
An electrically operated valve assembly having a manual override includes a valve body, an actuation cam, a shaft, a gear, and a biasing member. The shaft is connected to the actuation cam and includes a projection. The gear defines an opening which selectively receives the projection of the shaft to engage the shaft to the gear. In a first operating condition of the valve assembly, the actuation cam is in an engaged position relative to the valve and the shaft is biased to be engaged with the gear. In a second operating condition of the valve assembly, the actuation cam is in a disengaged position offset along the axis of the shaft from the valve handle and at least partially rotated about the axis of the shaft such that the shaft is disengaged from the gear. Further, a master control module can control one or more such valve assemblies.
Abstract:
A sensor, system, and method for determining whether sufficient water is present to safely operate a pump. The sensor includes first and second conductive fittings that are physically and electrically isolated from one another by a third non-conductive fitting. Electrodes are secured to the exteriors of the first and second fittings and are electrically connected to an electronic detection device. The electronic detection device applies a voltage across the first and second fittings and detects a current flowing between the first and second fittings. The current is correlated to the presence of water between the first and second fittings. If the detected current is below a predetermined minimum, the electronic detection device turns off the pump to prevent dry-running thereof.
Abstract:
A manifold system for supplying water to two or more consumer devices on a marine vessel having a primary consumer and one or more secondary consumers has a primary conduit connectable to the primary consumer, the conduit having an interior cross-sectional area determined by water requirements of the primary consumer. A manifold has a threaded inlet fitting, a primary outlet fitting dimensioned to be connectable to the conduit, and a plurality of secondary outlet fittings connectable to secondary conduits for secondary consumers. The inlet and secondary outlet fittings of the manifold have cross-sectional areas determined by dimensions of the primary outlet fitting. A strainer has an inlet connected to a through-hull fitting for receiving and straining incoming raw water and an outlet having a threaded connector for attachment to the manifold inlet fitting, the strainer having a flow capacity determined by the diameter of the strainer outlet. The cross-sectional area of the manifold inlet is larger than the combined cross-sectional areas of the primary outlet fitting and the secondary outlet fittings and is determined by the cross-sectional area of the primary outlet fitting.
Abstract:
According to one aspect, a master control module controlling multiple valve assemblies on a marine vessel may include a receiver, an input component, a processor, and a transmitter. The receiver may receive positional status signals from corresponding individual control modules. Each positional status signal may be indicative of a positional status of a valve assembly corresponding to a respective individual control module. The input component may receive a command pertaining to one or more of the valve assemblies, including a desired flow characteristic and/or a desired time. The processor may generate control signals for the valve assemblies in accordance with the desired flow characteristics. The transmitter may transmit the control signals to the respective individual control modules to effectuate the desired flow characteristic accordingly.
Abstract:
To prevent nuisance marine growth in a valve, particularly a ball valve, used to regulate a flow of seawater, a compound for lubricating and preventing nuisance marine growth is provided in the valve. The nuisance marine growth preventing compound includes a substantially uniform mixture of marine grease and an antifouling agent. The compound is introduced into the valve such that the compound is provided between and contacts a valve body and a ball that regulates the flow of seawater within the valve, and inhibits nuisance marine growth at a space between the ball and the valve body which is occupied by the compound.
Abstract:
An apparatus and method for estimating blockage within a liquid strainer used in a marine vessel is provided. The apparatus includes a sensor for measuring the rate of liquid flow through the strainer and a sensor for measuring the operational speed of a device utilizing the strained liquid. The apparatus also includes a control panel and central processing unit configured to receive at least one measurement from the flow sensor and receive at least one measurement from the speed sensor. The central processing unit then compares the relationship of the measured liquid flow rate and measured device speed to a predetermined clean strainer reference relationship of liquid flow rate and device speed at an equivalent device speed to determine the degree of strainer blockage. Visible and audible indicators are actuated when blockage becomes excessive.
Abstract:
A scoop strainer has a rim to attach the strainer to an outer surface of a hull of a marine vessel over a through-hull fitting intended to admit water to the interior of the hull. The strainer has small openings therethrough to pass water but not large undesired objects or marine life, and a larger opening to permit access to the interior of the strainer and to the through-hull fitting to clean out marine growth and the like. A cover is hinged to the strainer and is movable between an open, access position and a closed position. A threaded fastener passing through the cover threads into the rim to selectively hold the access cover closed.
Abstract:
An electrically operated valve assembly having a manual override includes a valve body, an actuation cam, a shaft, a gear, and a biasing member. The shaft is connected to the actuation cam and includes a projection. The gear defines an opening which selectively receives the projection of the shaft to engage the shaft to the gear. In a first operating condition of the valve assembly, the actuation cam is in an engaged position relative to the valve and the shaft is biased to be engaged with the gear. In a second operating condition of the valve assembly, the actuation cam is in a disengaged position offset along the axis of the shaft from the valve handle and at least partially rotated about the axis of the shaft such that the shaft is disengaged from the gear. Further, a master control module can control one or more such valve assemblies.
Abstract:
A drip control marine fitting for passage of liquid through an opening in the hull of a marine vessel has a hollow tube extending through an opening through the hull, a flange attached to the tube and an opening through the flange to allow flow of fluid out of the vessel. The flange has a first surface abutting the outer surface of the hull and a second surface facing away from the outer surface of the hull. The first surface of the flange has a smaller surface area than the second surface of said flange. A diagonal surface interconnects the first and second surfaces, the lower part of the diagonal surface extending outwardly and downwardly from the first surface to the second surface to inhibit flow of liquid from the passage to the outer surface of the hull.