Abstract:
An organic light emitting diode display includes: a substrate; a display area including an organic light emitting element on the substrate; an organic encapsulation layer covering the organic light emitting element and having a second boundary spaced from a first boundary of the display area by a first distance; and an inorganic encapsulation layer having a peripheral area contacting the substrate and covering the organic encapsulation layer.
Abstract:
An organic light emitting diode (OLED) display is disclosed. In one embodiment, the display includes i) a substrate, ii) a driving circuit formed on the substrate, iii) an organic light emitting diode formed on the substrate and electrically connected to the driving circuit, iv) an encapsulation thin film formed on the driving circuit and organic light emitting diode and v) a spacer formed on the substrate and surrounding the encapsulation thin film.
Abstract:
Provided is an organic light emitting display apparatus in which process efficiency and contrast are increased. The organic light emitting display apparatus includes a substrate, a display unit that is formed on the substrate and includes an organic light emitting device, an encapsulation layer that is formed on the display unit so as to encapsulate the display unit, a color filter layer that is formed on the encapsulation layer, a protection layer that is formed on the color filter layer, and a black matrix that is formed on the protection layer. The black matrix is aligned not to overlap the color filter layer.
Abstract:
The present invention provides an electro-luminescent (EL) display device and a method of fabricating the same. The EL display device includes a substrate including a display region. The display origin may include a first electrode layer, a second electrode layer, and an emission portion interposed therebetween. A seal member may seal at least the display region. A blocking layer interposed between the seal member and the second electrode layer may overlap the display region.
Abstract:
A self-morphable haptic and visual information providing apparatus includes: a display unit configured to provide haptic information through a physical shape variation of a display screen; and a haptic element driving unit configured to generate a driving signal for providing the haptic information.
Abstract:
An organic light emitting diode display includes a substrate having organic light emitting diodes thereon. A thin film encapsulation layer is formed on the substrate such that the thin film encapsulation layer covers the organic light emitting diodes. A nonorganic layer is formed under the thin film encapsulation layer along the edge of the thin film encapsulation layer.
Abstract:
Provided are an electronic pen for inputting/outputting sensory information and a method for recognizing taste information and transforming the taste information into smell information using the same. The electronic pen includes: a sensory information input unit for receiving sensory information of the object; a signal processing unit for processing and storing sensory information transmitted from the sensory information input unit; a sensory information reproducing unit for outputting the sensory information; and a wireless communication unit for transmitting the sensory information.
Abstract:
An organic light emitting display including: a driving thin film transistor (TFT) including a semiconductor layer on a substrate including a source electrode, a drain electrode, and an N-type oxide semiconductor; at least one insulating layer formed on the driving TFT; a pixel defining layer for defining a pixel region on the insulating layer; a cathode electrode coupled to a drain electrode of the driving TFT and patterned to correspond to the pixel region; an electron injection layer arranged over the entire surfaces of the pixel defining layer and the cathode electrode and formed of a material whose band gaps are 3.0 eV to 5.0 eV selected from the group consisting of an oxide, a nitride, a fluoride, and diamond on; an organic light emitting layer formed on the electron injection layer to correspond to the cathode region; and an anode electrode formed on the organic light emitting layer.
Abstract:
Provided are a content browsing apparatus and method. The method includes: generating a terminal profile which includes system information and a user profile which includes information regarding user-preferred contents; receiving broadcasting contents or Web contents based on the information regarding the user-preferred contents included in the user profile; and rendering received broadcasting contents or Web contents based on the terminal profile and the user profile. Therefore, user-preferred broadcasting contents or Web contents can be provided.
Abstract:
A flat panel display comprises: a transparent substrate having a first display portion and a second display portion; at least one first organic light emitting diode positioned in the first display portion for emitting light in a first direction perpendicular to the transparent substrate, and having a first lower electrode, a first upper electrode, and a first organic emission layer interposed between the first lower electrode and the first upper electrode; and at least one second organic light emitting diode positioned in the second display portion for emitting light in a second direction opposite to the first direction, and having a second lower electrode, a second upper electrode, and a second organic emission layer interposed between the second lower electrode and the second upper electrode. As a result, the flat panel display is fabricated using one substrate to display both screens such that one of the screens is displayed while the other is not displayed. Accordingly, the thickness of electronic equipment employing the flat panel display may be reduced, and the power consumption of the electronic equipment may also be reduced.