摘要:
An electronic book is disclosed in which a spine housing system electronics supports one or more display panels, each display panel being configured with a transparent layer such as E-ink, and a light-emitting layer, such as an organic light-emitting diode layer. In embodiments of the invention, the layers may be stacked and fitted to a substrate. In further embodiments, multiple display panels may be joined to the spine to provide the appearance of a traditional book or notebook. A microprocessor in the spine may control the display panels and receive user input to alternately activate the layers in a display panel. A pen may be provided for interacting with the device and activating specific layers within a display panel.
摘要:
A display device is provided including a first electrodes arranged in a matrix shape above an insulation surface, a bank covering an end part of the first electrode and having an opening part exposing an upper surface of the first electrode, an organic layer covering the opening part and including a light emitting layer, and a second electrode covering the bank and the organic layer, wherein the bank has an upper surface part and an inclined part between the upper surface part and an opening in the bank, and a surface of the inclined part has a plurality of concave and convex parts.
摘要:
An OLED pixel unit is disclosed, which comprises an opaque region and a transparent region which are arranged side by side, the opaque region comprises an opaque display element, and the transparent region comprises at least one transparent display element. Independent operation of the opaque display element and the transparent display element is realized without affecting the transparent display in the transparent region of the OLED pixel unit, thus increasing the resolution of the OLED pixel unit. A transparent display device comprising the OLED pixel unit, a method for fabricating a transparent display device, and a display apparatus are further disclosed. (FIG. 2)
摘要:
A display panel is disclosed. The display panel includes a substrate, a plurality of first unit pixel and a plurality of second unit pixel. The substrate includes a first region and a second region extending in a first direction. The plurality of first unit pixels is disposed in the first region of the substrate. The first unit pixel has a first area. The plurality of second unit pixel is disposed in the second region of the substrate. The second unit pixel has a second area which is smaller than the first area.
摘要:
Aspects of the invention provide an electro-optical device including first pixel portions each including an active element and second pixel portions each not including any active element, the first and second pixel portions being provided in an image display region of a substrate, a first driving device for driving the first pixel portions in an active driving method and a second driving device for driving the second pixel portions in a passive driving method. Accordingly, the invention can realize a display by using both an active driving method and a passive driving method with a simple structure.
摘要:
A double sided display comprises a first substrate, a first organic light-emitting device (OLED) disposed on the first substrate, a first spacer, a second substrate, a second OLED disposed on the second substrate and a second spacer. The first and second spacers are disposed on the first and second substrates, and close to the first and second OLEDs, respectively. A height of the first spacer is larger than a thickness of the first OLED. A height of the second spacer is larger than a thickness of the second OLED. During assembly, the first substrate is disposed opposite to the second substrate, and the first spacer is disposed opposite to the second spacer. Also, the exact positions of the first and second spacers are determined for preventing the direct touch between the first and second OLEDs while the double sided display is deformed.
摘要:
A double-sided display comprises a first organic light emitting device with a first transparent substrate, and the first organic light emitting device illuminates toward the first substrate. A second organic light emitting device with a second transparent substrate opposite to the first substrate, and the second organic light emitting device illuminates toward the second substrate. The first organic light emitting device is separated from the second organic light emitting device by a gap. A controller, coupled to the first and second organic light emitting devices, receives a control signal to individually switch the power of the first and second organic light emitting devices.
摘要:
A flat panel display includes a glass substrate, an organic light-emitting part, and a sealing part. The organic light-emitting part includes one or more organic light-emitting devices (OLED) formed on a surface of the glass substrate, which has a thickness of about 0.05 mm to about 0.5 mm. The sealing part seals the organic light-emitting part and protects it from damage during the manufacturing process. A method for manufacturing the flat panel display includes preparing a glass substrate of approximately 0.7 mm thickness or greater; forming a plurality of organic light-emitting devices on a surface of the glass substrate, wherein a group of one or more of the plurality of organic light-emitting devices constitutes an organic light-emitting part; sealing each organic light-emitting part; and etching the glass substrate to a predetermined thickness.
摘要:
An organic light emitting display (OLED) has a substrate, on two opposite sides of which a fist electrode, an organic layer and a second electrode are stacked in sequence respectively. To prevent the light of the organic layers at the opposite sides of the substrate from interference, the substrate or the first electrode can be made of opaque materials, or at least an opaque light barrier layer is provided between the substrate and the first electrode or between the first electrode and the organic layer.
摘要:
A dual emission display includes a first substrate, and a second substrate located on the first substrate. A first organic light emitting diode is disposed on the upper surface of the first substrate, and is completely covered by a first protecting layer. A second organic light emitting diode is disposed on the lower surface of the second substrate, and is completely covered by a second protecting layer. The first protecting layer and the second protecting layer are used to isolate these organic light emitting diodes from the oxygen and the moisture.