Abstract:
A light emitting device includes a substrate and a plurality of protrusions protruding from a top surface of the substrate. A first semiconductor layer is provided on top surfaces of the protrusions and a plurality of seed patterns protrudes from a bottom surface of the first semiconductor layer toward the protrusions. A medium layer is provided between the protrusions and a light emitting structure on a top surface of the first semiconductor layer. The bottom surface of the first semiconductor layer is located at a higher position than that of each of the protrusions, and the first semiconductor layer contacts a c-plane of each protrusion.
Abstract:
A semiconductor device may include a composite represented by Formula 1 below as an active layer. x(Ga2O3).y(In2O3).z(ZnO) Formula 1 wherein, about 0.75≦x/z≦about 3.15, and about 0.55≦y/z≦about 1.70. Switching characteristics of displays and driving characteristics of driving transistors may be improved by adjusting the amounts of a gallium (Ga) oxide and an indium (In) oxide mixed with a zinc (Zn) oxide and improving optical sensitivity.
Abstract translation:半导体器件可以包括由下面的式1表示的复合物作为有源层。 x(Ga 2 O 3)y(In 2 O 3)z(ZnO)式1其中约0.75< lE; x / z≦̸约3.15和约0.55≤n1E; y /z≤n1E;约1.70。 可以通过调节与锌(Zn)氧化物混合的镓(Ga)氧化物和铟(In))的量来提高驱动晶体管的开关特性并提高光学灵敏度。
Abstract:
In an organic light-emitting display apparatus and a method of manufacturing the same, the organic light-emitting display apparatus comprises: a substrate; a light-emitting unit formed on the substrate; and an encapsulation film, which covers the light-emitting unit on the substrate, and which includes a plurality of organic layers and a plurality of inorganic layers which are alternately stacked.
Abstract:
Provided are a thin film transistor and a method of manufacturing the same. The thin film transistor may include a gate; a channel layer; a source and a drain, the source and the drain being formed of metal; and a metal oxide layer, the metal oxide layer being formed between the channel layer and the source and the drain. The metal oxide layer may have a gradually changing metal content between the channel layer and the source and the drain.
Abstract:
Disclosed herein are a stature measuring method and a stature measuring device using the method. The method includes securing an anchoring unit, coupled to a main body via a tape, to a building wall, moving the main body to a bottom in a state in which the anchoring unit is secured to the building wall, inputting a reference point setting signal in a state in which the main body comes into contact with the bottom, and moving the main body from the bottom to a position above an examinee's head, and measuring a distance from a point where the reference point setting signal is input to a point where the main body is moved above the examinee's head, thus determining the examinee's stature.
Abstract:
Provided is a method of fabricating a ZnO thin film structure and a ZnO thin film transistor (TFT), and a ZnO thin film structure and a ZnO thin film transistor. The method of fabricating a ZnO thin film structure may include forming a ZnO thin film on a substrate in an oxygen atmosphere, forming oxygen diffusion layers of a metal having an affinity for oxygen on the ZnO thin film and heating the ZnO thin film and the oxygen diffusion layers to diffuse oxygen of the ZnO thin film into the oxygen diffusion layers.
Abstract:
Provided is a thin film transistor that includes a substrate on which an insulating layer is formed, a gate formed on a region of the insulating layer, a gate insulating layer formed on the insulating layer and the gate, a channel region formed on the gate insulating layer on a region corresponding to the location of the gate, a source and a drain respectively formed by contacting either side of the channel region; and a passivation layer formed of a compound made of a group II element and a halogen element on the channel region.
Abstract:
Provided are a thin film transistor (TFT) including a selectively crystallized channel layer, and a method of manufacturing the TFT. The TFT includes a gate, the channel layer, a source, and a drain. The channel layer is formed of an oxide semiconductor, and at least a portion of the channel layer contacting the source and the drain is crystallized. In the method of manufacturing the TFT, the channel layer is formed of an oxide semiconductor, and a metal component is injected into the channel layer so as to crystallize at least a portion of the channel layer contacting the source and the drain. The metal component can be injected into the channel layer by depositing and heat-treating a metal layer or by ion-implantation.
Abstract:
Provided is a memory device comprising a molecular adsorption layer. The memory device includes: a substrate; a source electrode and a drain electrode formed on the substrate and separated from each other; a carbon nanotube (CNT) layer electrically connected to the source electrode and the drain electrode; a memory cell contacting the CNT so as to store a charge from the CNT; and a gate electrode formed on the memory cell, wherein the memory cell comprises: a first insulating layer formed on the CNT; a molecular adsorption layer which is formed on the first insulating layer and acts as a charge storage layer; and a second insulating layer formed on the molecular adsorption layer.
Abstract:
Provided are a thin film transistor (TFT) including a selectively crystallized channel layer, and a method of manufacturing the TFT. The TFT includes a gate, the channel layer, a source, and a drain. The channel layer is formed of an oxide semiconductor, and at least a portion of the channel layer contacting the source and the drain is crystallized. In the method of manufacturing the TFT, the channel layer is formed of an oxide semiconductor, and a metal component is injected into the channel layer so as to crystallize at least a portion of the channel layer contacting the source and the drain. The metal component can be injected into the channel layer by depositing and heat-treating a metal layer or by ion-implantation.