Abstract:
An electrical disconnect apparatus includes a housing having an interior and an exterior, first and second conductors extending from the exterior into the interior, a movable conductor, and an actuator assembly coupled to the housing. The movable conductor has a connected position in which the movable conductor electrically connects the first conductor and the second conductor, and a disconnected position in which the first conductor is electrically disconnected from the second conductor. The actuator assembly is adapted to move the movable conductor between the connected position and the disconnected position, and can be actuated manually or automatically.
Abstract:
An electrical fault detection system includes an underground transformer unit having an enclosure and an electrical busbar element extending from the enclosure, and an acoustic sensor apparatus operatively coupled to an external structure of the enclosure or the electrical busbar element. The acoustic sensor apparatus is structured to: (i) detect an acoustic signal within the enclosure, (ii) analyze the detected acoustic signal and determine whether the detected acoustic signal is indicative of an electrical fault within the enclosure using an event time correlation (ETC) algorithm, and (iii) responsive to determining that the detected acoustic signal is indicative of an electrical fault, output a message indicating that a fault has been detected.
Abstract:
An autonomous thermal event control and monitoring system includes a processor component having an enclosure, a processor within the enclosure, a routine, a number of inputs from the processor, and a plurality of inputs to and a plurality of outputs from the processor for each of a plurality of feeders. The system also includes a human machine interface communicating with the processor. The inputs include for each of the feeders, a first input for a thermal sensor and a second input for a status of a network protector, a plurality of third inputs for statuses of a medium voltage interrupter, and a fourth input for a sudden pressure sensor of a network transformer. The outputs include for each of the feeders, a first output for a command to the network protector, and a plurality of second outputs for commands to the medium voltage interrupter.
Abstract:
An autonomous thermal event control and monitoring system includes a processor component having an enclosure, a processor within the enclosure, a routine, a number of inputs from the processor, and a plurality of inputs to and a plurality of outputs from the processor for each of a plurality of feeders. The system also includes a human machine interface communicating with the processor. The inputs include for each of the feeders, a first input for a thermal sensor and a second input for a status of a network protector, a plurality of third inputs for statuses of a medium voltage interrupter, and a fourth input for a sudden pressure sensor of a network transformer. The outputs include for each of the feeders, a first output for a command to the network protector, and a plurality of second outputs for commands to the medium voltage interrupter.