Abstract:
An atomic magnetometer, which operates in a communication system using a magnetic signal in a very low frequency (VLF) band, may comprise: a vapor cell comprising one or more alkaline metal atoms; a pump light source configured to provide circularly polarized pump beams to the vapor cell; an irradiation light source configured to provide linearly polarized irradiation beams to the vapor cell; a magnetic signal detecting unit configured to detect a magnetic signal by measuring a polarization rotation angle from the linearly polarized irradiation beam passing through the vapor cell; and a bias magnetic field control unit configured to control a bias magnetic field applied to the vapor cell.
Abstract:
An antenna device for magnetic field communication may include: a first coil; a second coil; a third coil; a first capacitor connected to a 1-1 terminal of the first coil; a second capacitor connected to a 2-1 terminal of the second coil; a third capacitor connected to a 3-1 terminal of the third coil; and an input port including a first input terminal connected to a 1-2 terminal of the first coil, a 2-2 terminal of the second coil, and a 3-2 terminal of the third coil, and a second input terminal connected to the first capacitor, the second capacitor, and the third capacitor.
Abstract:
Provided is a catalytic combustible gas sensor using a porous membrane embedded micro-heater and a micro electro mechanical system (MEMS) technology. The present disclosure provides a gas sensor that is structurally, mechanically, and electrically stable, and has a simple device fabrication process in a MEMS catalytic combustible gas sensor that is miniaturized and also consumes a significantly small amount of power by puncturing a plurality of holes in membranes, a heating resistor, and a sensing electrode, by etching and thereby thermally isolating a substrate by a predetermined thickness through the plurality of holes, and by including a sensing structure formed using a sensing material and a compensation structure formed using a compensation material.
Abstract:
Provided are a micro electro mechanical system (MEMS) acoustic sensor for removing a nonlinear component that occurs due to a vertical motion of a lower electrode when external sound pressure is received by fixing the lower electrode to a substrate using a fixing pin, and a fabrication method thereof. The MEMS acoustic sensor removes an undesired vertical motion of a fixed electrode when sound pressure is received by forming a fixing groove on a portion of the substrate and then forming a fixing pin on the fixing groove, and fixing the fixed electrode to the substrate using the fixing pin, and thereby improves a frequency response characteristic and also improves a yield of a process by inhibiting thermal deformation of the fixed electrode that may occur during the process.