Abstract:
The present disclosure provides is a method of manufacturing a flexible pressure sensor by forming the polymer support and the conductive particles from a single uniform solution and performing a curing of the polymer support and a growth of the conductive particles in a continuous process. The method of manufacturing a flexible pressure sensor includes: preparing a solution by adding a polymer support material, a conductive particle, and a photoinitiator to a solvent; applying the solution on a flexible substrate; and irradiating ultraviolet rays onto the solution applied on the flexible substrate to cure the solution and form a solid film.
Abstract:
Provided is a catalytic combustible gas sensor using a porous membrane embedded micro-heater and a micro electro mechanical system (MEMS) technology. The present disclosure provides a gas sensor that is structurally, mechanically, and electrically stable, and has a simple device fabrication process in a MEMS catalytic combustible gas sensor that is miniaturized and also consumes a significantly small amount of power by puncturing a plurality of holes in membranes, a heating resistor, and a sensing electrode, by etching and thereby thermally isolating a substrate by a predetermined thickness through the plurality of holes, and by including a sensing structure formed using a sensing material and a compensation structure formed using a compensation material.