Abstract:
Disclosed are a method and apparatus for transmitting information in a low latency mobile communication system. Delay time requests are obtained from terminals, and time intervals for transmitting control information for the respective terminals are determined on the basis of the delay time requests. Control information is transmitted to the respective terminals according to the determined time intervals.
Abstract:
A discovery signal that a first device joining in direct communication broadcasts through a radio channel is provided. The discovery signal includes a first field representing whether the discovery signal is a signal for discovering a device or a signal for discovering a service, and a second field including one of device identifier information of the first device and service information of a service that the first device provides according to a value of the first field.
Abstract:
A terminal executes a random access procedure with a target base station depending on a pre-random access channel (pre-RACH) command in a handover preparation step executed between a source base station currently accessed by the terminal and the target base station when the terminal receives the pre-RACH command from the source base station through layer2 (L2) signaling in the handover preparation step.
Abstract:
Provided are a method and an apparatus for performing a synchronous hybrid automatic repeat reQuest (HARQ). When a variable transmission time allocation is allocated per HARQ process, resource allocation information including a duration field corresponding to a length of a transmission time interval (TTI) allocated to each of the HARQ processes is transmitted. After the resource allocation information is transmitted, it is determined whether an HARQ error occurs at a predetermined timing and if it is determined whether the HARQ error occurs, the HARQ error is handled.
Abstract:
Disclosed is a method and apparatus for random access in a wireless communication system. In a communication environment in which a first terminal and a second terminal coexist, a base station receives a random access identification signal from one among a first terminal and a second terminal. The base station transmits a busy signal in response to the random access identification signal. After that, the base station receives data from the terminal having transmitted the random access identification signal.
Abstract:
Disclosed herein is a base station of a mobile communication system configuring at least one low latency transmission time interval (TTI) within a length of at least one transmission symbol in a subframe including a plurality of transmission symbols and transmitting LL (low latency) TTI related information using a physical control format indicator channel (PCFICH) transmitted at a pre-defined transmission symbol position within the subframe.
Abstract:
Disclosed herein are a method and an apparatus for a buffer status report in a mobile communication system. The method for a buffer status report includes setting a new QoS class identifier (QCI) value for supporting a radio bearer (RB) added for a low latency service; and allocating a logical channel of a RB for an existing service and a logical channel of a RB for the low latency service to logical channel groups (LCGs) in consideration of the newly set QCI value. Further the buffer status report for each logical channel performed in an LCG unit is received.
Abstract:
A terminal transmits and receives data by using legacy transport channels and legacy physical channels, which operate based on a first TTI, configures, when a service requiring an operation of a new second TTI is generated, new transport channels and new physical channels which operate based on the second TTI while configuring a new radio bearer, and thereafter, transmits and receives data of the service by using the new transport channels and the new physical channels.
Abstract:
A terminal of a communication system transmits a first signal through a physical uplink channel that is allocated within a first radio resource based on a first Transmission Time Interval (TTI) having a first time length at a first step for uplink access, performs the remaining steps for the uplink access using a second radio resource based on the second TTI from a base station, when the terminal may operate based on a second TTI having a second time length smaller than the first time length, and transmits uplink data.
Abstract:
A discovery method is provided by a device in a D2D direction communication. The device selects a discovery resource unit from among discovery resource units which are not being used after listening during one or more discovery resource periods. The device transmits a first discovery signal through the selected discovery resource unit in a broadcasting manner at a first discovery resource period, and transmits a second discovery signal through the selected discovery resource unit in a query-based manner at a second discovery resource period.