Abstract:
Embodiments of the invention provide a technique that effects spot gloss or gloss control and/or variations on one image without requiring clear inks. This is preferably accomplished by use of a multilayer printing process in which an image is first printed using a first set of color print heads and then cured, and in which the image is again printed using a second set of color print head, but where the image remains uncured for a predetermined interval to allow the ink drops applied to the media to spread and thus introduce a gloss effect.
Abstract:
Embodiments of the invention provide a technique that effects spot gloss or gloss control and/or variations on one image without requiring clear inks. This is preferably accomplished by use of a multilayer printing process in which an image is first printed using a first set of color print heads and then cured, and in which the image is again printed using a second set of color print head, but where the image remains uncured for a predetermined interval to allow the ink drops applied to the media to spread and thus introduce a gloss effect.
Abstract:
Embodiments of the invention provide a technique that effects spot gloss or gloss control and/or variations on one image without requiring clear inks. This is preferably accomplished by use of a multilayer printing process in which an image is first printed using a first set of color print heads and then cured, and in which the image is again printed using a second set of color print head, but where the image remains uncured for a predetermined interval to allow the ink drops applied to the media to spread and thus introduce a gloss effect.
Abstract:
A UV curable inkjet ink composition includes a monofunctional urethane acrylate component consisting of 5-50% by weight of the ink composition, the monofunctional urethane acrylate component comprising either of a monomer and an oligomer; a monomer component consisting of 10-80% by weight of ink composition; a photoinitiator component consisting of 1-15% by weight of ink composition; and an oligomer component, consisting of no more than 20% by weight of the ink composition, in addition to the monofunctional urethane acrylate component if the monofunctional urethane acrylate component is an oligomer.
Abstract:
Enhanced printing solutions are enabled by providing ultraviolet curing conditions without requiring complete evacuation of atmospheric oxygen. Increased ink coverage and adjusted surface appearance are also provided.
Abstract:
This invention relates to radiation curable ink compositions comprising one or more mono-functional monomers, optionally one or more oligomers, one or more antioxidants capable to react with peroxy radicals to generate radicals to propagate polymerization, and one or more photoinitiators comprising at least an acylphosphine oxide, wherein the ratio of the antioxidants to acylphpsphine is 1:1 to 1:20 by weight. The ink composition provides tack-free surface cure without requiring nitrogen or other inert gas during curing.
Abstract:
Embodiments of the invention have application in the field of inkjet inks. Additionally, the novel energy cure monomers and oligomers disclosed herein also have application more broadly in the field of energy cure inks and coatings.
Abstract:
Enhanced printing systems, structures, and processes provide ultrasonication of ink, such as to degas the ink, and/or to maintain the size of particles within the ink. At least one ultrasonic module, such as comprising any of an ultrasonic probe or an ultrasonic bath, is located within an ink delivery system. Ink is delivered to the ultrasonic module, and ultrasonic energy is applied to the ink, such as at a sufficient level and duration to degas the ink, and/or to reduce the size of particles within the ink. In some embodiments, the particles may be agglomerates, wherein the applied energy is configured to reduce the size of the agglomerates to a size that can be jetted through the print head. In other embodiments, the particles may be metallic particles, wherein the applied energy is configured to create smaller metallic particles that can be jetted with the ink through the print head.