Abstract:
A METHOD IS DISCLOSED FOR THE OXYGENATION OF LIQUID HYDROCARBON COMPOUNDS TO FATTY ACIDS AND OTHER OXYGENATED COMPOUNDS BY ATOMIZING A PREHEATED AND PRESSURIZED MIXTURE OF THE HYDROCARBON STEAM, AND AIR TO A VAPORFOAM, AND PASSING SUCH VAPOR-FOAM MIXTURE THROUGH A CATALYTIC BED AT A TEMPERATURE ABOVE ATMOSPHERIC TEMPERATURE BUT BELOW THE BOILING POINT OF THE HYDROCARBON. THE VAPOR-FOAM IS USAUALLY A COMBINATION OF VAPOR AND FOAM BUT MAY BE ALL FOAM OR SUBSTANTIALLY ALL VAPOR. SEVERAL FORMS OF APPARATUS ARE DISCLOSED. IN EACH FORM DISCLOSED A REACTION VESSEL IS PROVIDED HAVING A CATALYTIC BED THEREIN AND AN ATOMIZER IS PROVIDED WITHIN THE VESSEL IN ORDER TO FORM THE LIQUID INTO A VAPOR-FOAM PRIOR TO PASSAGE THROUGH THE CATALYTIC BED. IN TWO OF THE APPARATUS, THE HYDROCARBON MATERIAL, STEAM, AND AIR ENTER THE REACTION VESSEL, AND ARE ATOMIZED NEAR THE TOP THEREOF AND THEN PASS THROUGH THE CATALYTIC BED AND MOVE OUT OF THE REACTION VESSEL AT THE BOTTOM, GOING FROM THERE TO AN ACCUMULATOR WHERE THE PRODUCT IS SETTLED AND SEPARATED. IN ONE ARRANGEMENT, THE FLOW IS REVERSED SO THAT THE MATERIALS MOVE UPWARD THROUGH THE REACTION VESSEL. SEVERAL TYPES OF HEAT EXCHANGERS ARE SHOWN FOR PREHEATING THE MATERIALS TO BE REACTED EITHER UTILIZING THE HEAT FROM THE REACTION (WHICH IS NORMALLY EXOTHERMIC) OR UTILIZING HOT WATER OR STEAM.