Abstract:
A fixed-bed multitubular reactor, comprising a plurality of reaction tubes (3) filled with a catalyst and catalyst temperature measurers (4) measuring the temperatures of the reaction tubes near the radical center parts thereof. The catalyst temperature measurer (4) is installed in each of a part of the plurality of reaction tubes (3), and the measurement positions thereof are differentiated from each other in the longitudinal direction of the reaction tubes (3).
Abstract:
A method is disclosed for controlling addition of a supplementary oxygen stream into a steam methane reformer utilizing both the supplementary oxygen stream and a primary oxidant stream to support combustion of a fuel stream by burners firing into a radiant section of the reformer. The combustion generates heat to support endothermic heat requirements of the reforming reaction conducted in reformer tubes to obtain an enhanced rate of production of a product gas stream produced by the endothermic reaction. In the method, a temperature is obtained that is at least referable to a reformer tube wall temperature measured at a location of inlet regions of the reformer tubes at which a maximum temperature is produced at the enhanced rate of production. This temperature is controlled by regulating the flow rate of the supplementary oxygen stream to either prevent damage to the reformer tubes at such location at which the maximum temperature is produced or to maintain the maximum temperature if the same is less than a temperature that will damage the tubes.
Abstract:
A process for producing hydrocarbons comprises providing a multi-tubular reactor having at least 100 tubes units containing a catalyst, each tube being between 2 and 5 meters tall and in thermal contact with a cooling fluid; feeding hydrogen and carbon monoxide to each tube at a linear gas superficial velocity less than about 60 cm/s; and converting the gas feedstream to hydrocarbons on the catalyst, wherein the yield of hydrocarbons in each tube is greater than 100 (kg hydrocarbons)/hr/(m3 reaction zone). Each tube may have an internal diameter greater than 2 centimeters. The catalyst may be active for Fischer Tropsch synthesis and may comprise cobalt or iron. The maximum difference in the radially-averaged temperature between two points that are axially spaced along the reactor is less than 15° C., preferably less than 10° C. The catalyst loading or intrinsic activity may vary along the length of the reactor.
Abstract:
Hydrogen purification membranes, hydrogen purification devices, and fuel processing and fuel cell systems that include hydrogen purification devices. The hydrogen purification membranes include a metal membrane, which is at least substantially comprised of palladium or a palladium alloy. In some embodiments, the membrane contains trace amounts of carbon, silicon, and/or oxygen. In some embodiments, the membranes form part of a hydrogen purification device that includes an enclosure containing a separation assembly, which is adapted to receive a mixed gas stream containing hydrogen gas and to produce a stream that contains pure or at least substantially pure hydrogen gas therefrom. In some embodiments, the membrane(s) and/or purification device forms a portion of a fuel processor, and in some embodiments, the membrane(s) and/or purification device forms a portion of a fuel processing or fuel cell system.
Abstract:
Hydrogen purification membranes, hydrogen purification devices, and fuel processing and fuel cell systems that include hydrogen purification devices. The hydrogen purification membranes include a metal membrane, which is at least substantially comprised of palladium or a palladium alloy. In some embodiments, the membrane contains trace amounts of carbon, silicon, and/or oxygen. In some embodiments, the membranes form part of a hydrogen purification device that includes an enclosure containing a separation assembly, which is adapted to receive a mixed gas stream containing hydrogen gas and to produce a stream that contains pure or at least substantially pure hydrogen gas therefrom. In some embodiments, the membrane(s) and/or purification device forms a portion of a fuel processor, and in some embodiments, the membrane(s) and/or purification device forms a portion of a fuel processing or fuel cell system.
Abstract:
A process and apparatus for stripping a volatile component from a liquid. The volatile component is destroyed by exothermic reaction with an active component in the gas phase, typically over a catalyst. Heat generated by the reaction of the volatile and active components is transferred to a fluid contact zone in which the organic component is stripped from the liquid stream by a stripping gas. Transfer of heat to the fluid contact zone increases the equilibrium partial pressure of the volatile component in the gas phase and thus increases the driving force for mass transfer in the stripping operation. Preferably, the volatile component is reacted with the active component in a regenerative heat transfer reaction system.
Abstract:
Gas-solids transport and heat exchange techniques are disclosed wherein solid particulate material is circulated in a "figure 8" or a circular flow path for selective contact and/or direct heat exchange with gaseous media. The particulate material is introduced into streams of gaseous media at spaced locations in the flow path and subsequently separated from the gaseous streams following contact and/or heat exchange therewith. The gaseous streams are maintained separate from one another by loose packed bed columns of particulate material formed in the flow path and used to introduce the particulate material into the gaseous streams. The flow rate of the particulate material is regulated by the controlled biasing of particulate material from each of the columns thereof directly into the gaseous streams, and the particulate material is circulated solely through the use of the gaseous media and the force of gravity. The particulate material is circulated in cocurrent relationship with each of the gaseous streams in figure 8 flow path systems and, in circular flow path systems, the particulate material is circulated in cocurrent relationship with one of the gaseous streams and in countercurrent relationship with the other of the gaseous streams. In heat exchange applications, heat transfer between the streams of gaseous media is provided as a function of the flow rate of the particulate material and the relative flow rates of the streams of gaseous media.
Abstract:
A METHOD IS DISCLOSED FOR THE OXYGENATION OF LIQUID HYDROCARBON COMPOUNDS TO FATTY ACIDS AND OTHER OXYGENATED COMPOUNDS BY ATOMIZING A PREHEATED AND PRESSURIZED MIXTURE OF THE HYDROCARBON STEAM, AND AIR TO A VAPORFOAM, AND PASSING SUCH VAPOR-FOAM MIXTURE THROUGH A CATALYTIC BED AT A TEMPERATURE ABOVE ATMOSPHERIC TEMPERATURE BUT BELOW THE BOILING POINT OF THE HYDROCARBON. THE VAPOR-FOAM IS USAUALLY A COMBINATION OF VAPOR AND FOAM BUT MAY BE ALL FOAM OR SUBSTANTIALLY ALL VAPOR. SEVERAL FORMS OF APPARATUS ARE DISCLOSED. IN EACH FORM DISCLOSED A REACTION VESSEL IS PROVIDED HAVING A CATALYTIC BED THEREIN AND AN ATOMIZER IS PROVIDED WITHIN THE VESSEL IN ORDER TO FORM THE LIQUID INTO A VAPOR-FOAM PRIOR TO PASSAGE THROUGH THE CATALYTIC BED. IN TWO OF THE APPARATUS, THE HYDROCARBON MATERIAL, STEAM, AND AIR ENTER THE REACTION VESSEL, AND ARE ATOMIZED NEAR THE TOP THEREOF AND THEN PASS THROUGH THE CATALYTIC BED AND MOVE OUT OF THE REACTION VESSEL AT THE BOTTOM, GOING FROM THERE TO AN ACCUMULATOR WHERE THE PRODUCT IS SETTLED AND SEPARATED. IN ONE ARRANGEMENT, THE FLOW IS REVERSED SO THAT THE MATERIALS MOVE UPWARD THROUGH THE REACTION VESSEL. SEVERAL TYPES OF HEAT EXCHANGERS ARE SHOWN FOR PREHEATING THE MATERIALS TO BE REACTED EITHER UTILIZING THE HEAT FROM THE REACTION (WHICH IS NORMALLY EXOTHERMIC) OR UTILIZING HOT WATER OR STEAM.
Abstract:
A power generator is described that provides at least one of electrical and thermal power comprising (i) at least one reaction cell for reactions involving atomic hydrogen hydrogen products identifiable by unique analytical and spectroscopic signatures, (ii) a molten metal injection system comprising at least one pump such as an electromagnetic pump that provides a molten metal stream to the reaction cell and at least one reservoir that receives the molten metal stream, and (iii) an ignition system comprising an electrical power source that provides low-voltage, high-current electrical energy to the at least one steam of molten metal to ignite a plasma to initiate rapid kinetics of the reaction and an energy gain. In some embodiments, the power generator may comprise: (v) a source of H2 and O2 supplied to the plasma, (vi) a molten metal recovery system, and (vii) a power converter capable of (a) converting the high-power light output from a blackbody radiator of the cell into electricity using concentrator thermophotovoltaic cells or (b) converting the energetic plasma into electricity using a magnetohydrodynamic converter.
Abstract:
The number of small gels that form in polyolefin thin films may be reduced by altering certain production parameters of the polyolefin. In some instances, the number of small gels may be influenced by the melt index of the polyolefin. However, in many instances, melt index is a critical part of the polyolefin product specification and, therefore, is not manipulated. Two parameters that may be manipulated to mitigate small gel count while maintaining the melt index are polyolefin residence time in the reactor and ICA concentration in the reactor.