Abstract:
A controlled power supply comprising: a) an array of low voltage current sources; b) a plurality of switch power supplies coupled to each of the storage capacitors and respective ones of the pulse loads being coupled to each of the switch power supplies; c) each of the storage capacitors being configured for storing energy during an inactive portion of a load switching cycle of the respective switch power supply to which the corresponding storage capacitor is coupled when the pulse loads are inactive; d) a respective output capacitor in association with each of the switch power supplies for feeding voltage to the respective pulse loads during an active portion of the load switching cycle; and e) the respective storage capacitor being configured for supplying the stored energy via the respective to the respective switch power supply to which the storage capacitor is coupled to each of the pulse loads coupled to switch power supply during an active portion of the load switching cycle.
Abstract:
A method for controlling electric power supply, the method comprising: (a) controllably down converting by a step-down power converter entry voltage from a power source and preventing up-conversion by a step-up power converter, substantially when the entry voltage is larger than a measured exit voltage and is in compliance with a first criterion that is based on the entry voltage and on the measured exit voltage; wherein the measured exit voltage is measured at an exit of both step-up power converter and the step-down power converter; and (b) controllably up converting by the step-up power converter the entry voltage and preventing down-conversion by the step-down power converter, substantially when the entry voltage is lower than the measured exit voltage and is in compliance with a second criterion that is based on the entry voltage and on the measured exit voltage.
Abstract:
A method for controlling electric power supply, the method comprising: (a) controllably down converting by a step-down power converter entry voltage from a power source and preventing up-conversion by a step-up power converter, substantially when the entry voltage is larger than a measured exit voltage and is in compliance with a first criterion that is based on the entry voltage and on the measured exit voltage; wherein the measured exit voltage is measured at an exit of both step-up power converter and the step-down power converter; and (b) controllably up converting by the step-up power converter the entry voltage and preventing down-conversion by the step-down power converter, substantially when the entry voltage is lower than the measured exit voltage and is in compliance with a second criterion that is based on the entry voltage and on the measured exit voltage.