Abstract:
The present invention provides hearing systems and methods that provide an improved high frequency response. The high frequency response improves the signal-to-noise ratio of the hearing system and allows for preservation and transmission of high frequency spatial localization cues.
Abstract:
Systems, devices, and methods for communication include an ear canal microphone configured for placement in the ear canal to detect high frequency sound localization cues. An external microphone positioned away from the ear canal can detect low frequency sound, such that feedback can be substantially reduced. The canal microphone and the external microphone are coupled to a transducer, such that the user perceives sound from the external microphone and the canal microphone with high frequency localization cues and decreased feedback. Wireless circuitry can be configured to connect to many devices with a wireless protocol, such that the user can receive and transmit audio signals. A bone conduction sensor can detect near-end speech of the user for transmission with the wireless circuitry in a noisy environment. Noise cancellation of background sounds near the user can be provided.
Abstract:
Hearing systems for both hearing impaired and normal hearing subjects comprise an input transducer and a separate output transducer. The input transducer will include a light source for generating a light signal in response to either ambient sound or an external electronic sound signal. The output transducer will comprise a light-responsive transducer component which is adapted to receive light from the input transducer. The output transducer component will vibrate in response to the light input and produce vibrations in a component of a subject's hearing transduction pathway, such as the tympanic membrane, a bone in the ossicular chain, or directly on the cochlea, in order to produce neural signals representative of the original sound.
Abstract:
The present invention provides hearing systems and methods that provide an improved high frequency response. The high frequency response improves the signal-to-noise ratio of the hearing system and allows for preservation and transmission of high frequency spatial localization cues.
Abstract:
Contact hearing devices for use with a wearable communication apparatus are disclosed to provide the user with an open ear canal to hear ambient sound and sound from an audio signal. The disclosed devices and systems have an advantage of providing sound to user from the audio signal, in many embodiments without creating sound that can be perceived by others. The contact hearing device can also be used to amplify ambient sound to provide a hearing assistance to users with diminished hearing. The wearable information apparatus can be configured to couple wirelessly to the contact transducer assembly, such that the wearable information apparatus can be removed while the contact transducer assembly remains placed on the user.
Abstract:
The present invention provides hearing systems and methods that provide an improved high frequency response. The high frequency response improves the signal-to-noise ratio of the hearing system and allows for preservation and transmission of high frequency spatial localization cues.
Abstract:
Methods of measuring biometric characteristics using a sensor positioned in an ear canal of a user are provided. The sensor is positioned on or connected to an ear tip, a contact hearing device, or one or more components thereof. One or more biometric signals may be sensed from the sensor. The biometric characteristic of the user is measured or derived from these sensed signals, and include but are not limited to the temperature of the user, acoustic signal(s) from the user, movement(s) of the user, a ballistocardiogram, an electrocardiogram, oxygen saturation, and blood pressure.
Abstract:
An ear tip for use with a hearing aid is described, wherein the ear tip may include one or more features adapted to improve the comfort and or other characteristics of the ear tip.
Abstract:
Systems, devices and methods for communication include an ear canal microphone configured for placement in the ear canal to detect high frequency sound localization cues. An external microphone positioned away from the ear canal can detect low frequency sound, such that feedback can be substantially reduced. The canal microphone and the external microphone are coupled to a transducer, such that the user perceives sound from the external microphone and the canal microphone with high frequency localization cues and decreased feedback. Wireless circuitry can be configured to connect to many devices with a wireless protocol, such that the user can receive and transmit audio signals. A bone conduction sensor can detect near-end speech of the user for transmission with the wireless circuitry in a noisy environment. Noise cancellation of background sounds near the user can be provided
Abstract:
A transducer is configured to couple to the cochlear fluid so as to transmit sound with low amounts of energy, such that feed back to a microphone positioned in the ear canal is inhibited substantially. The cochlear fluid coupled hearing device can allow a user to determine from which side a sound originates with vibration of the cochlea and the user can also receive sound localization cues from the device, as feedback can be substantially inhibited. The transducer may be coupled to the cochlear fluid with a thin membrane disposed between the transducer and the cochlear fluid, for example with a fenestration in the cochlea. In some embodiments, a support coupled to the transducer directly contacts the fluid of the cochlea so as to couple the transducer to the cochlear fluid.