Abstract:
Using a transformation based at least in part on a non-simple orthogonal or unitary matrix, data may be transmitted over a data bus in a manner that is resilient to one or more types of signal noise, that does not require a common reference at the transmission and acquisition points, and/or that has a pin-efficiency that is greater than 50% and may approach that of single-ended signaling. Such transformations may be implemented in hardware in an efficient manner. Hybrid transformers that apply such transformations to selected subsets of signals to be transmitted may be used to adapt to various signal set sizes and/or transmission environment properties including noise and physical space requirements of given transmission environments.
Abstract:
Using a transformation based at least in part on a non-simple orthogonal or unitary matrix, data may be transmitted over a data bus in a manner that is resilient to one or more types of signal noise, that does not require a common reference at the transmission and acquisition points, and/or that has a pin-efficiency that is greater than 50% and may approach that of single-ended signaling. Such transformations may be implemented in hardware in an efficient manner. Hybrid transformers that apply such transformations to selected subsets of signals to be transmitted may be used to adapt to various signal set sizes and/or transmission environment properties including noise and physical space requirements of given transmission environments.
Abstract:
Using a transformation based at least in part on a non-simple orthogonal or unitary matrix, data may be transmitted over a data bus in a manner that is resilient to one or more types of signal noise, that does not require a common reference at the transmission and acquisition points, and/or that has a pin-efficiency that is greater than 50% and may approach that of single-ended signaling. Such transformations may be implemented in hardware in an efficient manner. Hybrid transformers that apply such transformations to selected subsets of signals to be transmitted may be used to adapt to various signal set sizes and/or transmission environment properties including noise and physical space requirements of given transmission environments.
Abstract:
Using a transformation based at least in part on a non-simple orthogonal or unitary matrix, data may be transmitted over a data bus in a manner that is resilient to one or more types of signal noise, that does not require a common reference at the transmission and acquisition points, and/or that has a pin-efficiency that is greater than 50% and may approach that of single-ended signaling. Such transformations may be implemented in hardware in an efficient manner. Hybrid transformers that apply such transformations to selected subsets of signals to be transmitted may be used to adapt to various signal set sizes and/or transmission environment properties including noise and physical space requirements of given transmission environments.
Abstract:
In bus communications methods and apparatus, a first set of physical signals representing the information to be conveyed over the bus is provided, and mapped to a codeword of a sparse signaling code, wherein a codeword is representable as a vector of a plurality of components, some of which are quiescent components and some of which are non-quiescent components, wherein the number of quiescent components and non-quiescent components meet a sparseness requirement.
Abstract:
Using a transformation based at least in part on a non-simple orthogonal or unitary matrix, data may be transmitted over a data bus in a manner that is resilient to one or more types of signal noise, that does not require a common reference at the transmission and acquisition points, and/or that has a pin-efficiency that is greater than 50% and may approach that of single-ended signaling. Such transformations may be implemented in hardware in an efficient manner. Hybrid transformers that apply such transformations to selected subsets of signals to be transmitted may be used to adapt to various signal set sizes and/or transmission environment properties including noise and physical space requirements of given transmission environments.
Abstract:
Using a transformation based at least in part on a non-simple orthogonal or unitary matrix, data may be transmitted over a data bus in a manner that is resilient to one or more types of signal noise, that does not require a common reference at the transmission and acquisition points, and/or that has a pin-efficiency that is greater than 50% and may approach that of single-ended signaling. Such transformations may be implemented in hardware in an efficient manner. Hybrid transformers that apply such transformations to selected subsets of signals to be transmitted may be used to adapt to various signal set sizes and/or transmission environment properties including noise and physical space requirements of given transmission environments.
Abstract:
In bus communications methods and apparatus, a first set of physical signals representing the information to be conveyed over the bus is provided, and mapped to a codeword of a sparse signaling code, wherein a codeword is representable as a vector of a plurality of components, some of which are quiescent components and some of which are non-quiescent components, wherein the number of quiescent components and non-quiescent components meet a sparseness requirement.