-
公开(公告)号:US11435219B2
公开(公告)日:2022-09-06
申请号:US15569178
申请日:2016-04-26
发明人: Peter Ploss , Stefan Rupitsch , Michal Bezdek , Thomas Frohlich , Beat Kissling
摘要: A method for ascertaining at least one pipe wall resonance frequency of a pipeline in the region of a measuring point by means of a field device of process measurements technology having at least a first ultrasonic transducer, which is placed on the pipeline at the measuring point, comprising steps as follows: providing a first transfer function Utransducer(f) at least of the first or a plurality of ultrasonic transducers located in the region of the measuring point; ascertaining a received spectrum Urec(f) from a received signal Urec(t) after transmission of an ultrasonic signal; ascertaining a second transfer function Umeasuring point(f) from the first transfer function Utransducer(f) of the first or the plurality of ultrasonic transducers and from the received spectrum urec(f), wherein the second transfer function Umeasuring point(f) is characteristic for the measuring point; and ascertaining the at least one pipe wall resonance frequency fres, especially a plurality of resonance frequencies, in the region of the measuring point by evaluating the second transfer function Umeasuring point(f) from step III, as well as a clamp-on, ultrasonic, flow measuring device, a method for ascertaining flow, a method for ascertaining a change of the measuring point and an identification device.
-
2.
公开(公告)号:US20180149511A1
公开(公告)日:2018-05-31
申请号:US15569178
申请日:2016-04-26
发明人: Peter Ploss , Stefan Rupitsch , Michal Bezdek , Thomas Frohlich , Beat Kissling
CPC分类号: G01F25/0007 , G01F1/662 , G01F1/667 , G01F15/024 , G01N29/12 , G01N2291/2634
摘要: A method for ascertaining at least one pipe wall resonance frequency of a pipeline in the region of a measuring point by means of a field device of process measurements technology having at least a first ultrasonic transducer, which is placed on the pipeline at the measuring point, comprising steps as follows: providing a first transfer function Utransducer(f) at least of the first or a plurality of ultrasonic transducers located in the region of the measuring point; ascertaining a received spectrum Urec(f) from a received signal Urec(t) after transmission of an ultrasonic signal; ascertaining a second transfer function Umeasuring point(f) from the first transfer function Utransducer(f) of the first or the plurality of ultrasonic transducers and from the received spectrum Urec(f), wherein the second transfer function Umeasuring point(f) is characteristic for the measuring point; and ascertaining the at least one pipe wall resonance frequency fres, especially a plurality of resonance frequencies, in the region of the measuring point by evaluating the second transfer function Umeasuring point(f) from step III, as well as a clamp-on, ultrasonic, flow measuring device, a method for ascertaining flow, a method for ascertaining a change of the measuring point and an identification device.
-
公开(公告)号:US10551230B2
公开(公告)日:2020-02-04
申请号:US15569162
申请日:2016-05-09
发明人: Peter Ploss , Stefan Rupitsch , Michael Bezdek , Thomas Frohlich , Beat Kissling
摘要: A measuring system, embodied as a clamp-on, ultrasonic, flow measuring device, comprises a tube, or a pipe, having a lumen surrounded by a tube, or pipe, wall, which tube or pipe is adapted to guide a volume portion of the fluid in its lumen; an ultrasonic transducer mounted on the tube, or pipe, on an outside of the tube, or pipe, wall facing away from the lumen, and acoustically coupled via the tube, or pipe, wall to fluid guided in the lumen, and adapted to convert a time varying electrical voltage into ultrasonic waves propagating through the tube, or pipe, wall and further through fluid guided in the lumen; an ultrasonic transducer mounted on the tube, or pipe, separated from the ultrasonic transducer on the outside of the tube, or pipe, wall, and acoustically coupled via the tube, or pipe, wall to fluid guided in the lumen, and adapted to receive ultrasonic waves propagating through fluid guided in the lumen, and further through the tube, or pipe, wall and to transduce such into an electrical voltage varying as a function of time; as well as an operating- and measuring electronics adapted to generate, a driver signal for the ultrasonic transducer. The driver signal has a time variable, electrical voltage, for effecting a received signal, of the ultrasonic transducer likewise having an electrical voltage, uB,II, varying as a function of time, in such a manner that both the driver signal, as well as also the received signal, each contain a plurality of spectral signal components, equally as well, in each case, a dominating spectral signal component having a maximum power spectral density, and that a frequency, of the dominating signal component of the driver signal, deviates by a magnitude of no more than |±100 kHz| from a frequency of the dominating signal component of the received signal, and/or by no more than 10% of the frequency of the dominating signal component of the received signal, from such frequency. Furthermore, the operating- and measuring electronics is adapted to produce by means of the received signal, at least one measured value for the at least one parameter.
-
公开(公告)号:US20180149505A1
公开(公告)日:2018-05-31
申请号:US15569162
申请日:2016-05-09
发明人: Peter Ploss , Stefan Rupitsch , Michael Bezdek , Thomas Frohlich , Beat Kissling
IPC分类号: G01F1/66
摘要: A measuring system, embodied as a clamp-on, ultrasonic, flow measuring device, comprises a tube, or a pipe, having a lumen surrounded by a tube, or pipe, wall, which tube or pipe is adapted to guide a volume portion of the fluid in its lumen; an ultrasonic transducer mounted on the tube, or pipe, on an outside of the tube, or pipe, wall facing away from the lumen, and acoustically coupled via the tube, or pipe, wall to fluid guided in the lumen, and adapted to convert a time varying electrical voltage into ultrasonic waves propagating through the tube, or pipe, wall and further through fluid guided in the lumen; an ultrasonic transducer mounted on the tube, or pipe, separated from the ultrasonic transducer on the outside of the tube, or pipe, wall, and acoustically coupled via the tube, or pipe, wall to fluid guided in the lumen, and adapted to receive ultrasonic waves propagating through fluid guided in the lumen, and further through the tube, or pipe, wall and to transduce such into an electrical voltage varying as a function of time; as well as an operating- and measuring electronics adapted to generate, a driver signal for the ultrasonic transducer. The driver signal has a time variable, electrical voltage, for effecting a received signal, of the ultrasonic transducer likewise having an electrical voltage, uB,II, varying as a function of time, in such a manner that both the driver signal, as well as also the received signal, each contain a plurality of spectral signal components, equally as well, in each case, a dominating spectral signal component having a maximum power spectral density, and that a frequency, of the dominating signal component of the driver signal, deviates by a magnitude of no more than |±100 kHz| from a frequency of the dominating signal component of the received signal, and/or by no more than 10% of the frequency of the dominating signal component of the received signal, from such frequency. Furthermore, the operating- and measuring electronics is adapted to produce by means of the received signal, at least one measured value for the at least one parameter.
-
-
-