摘要:
Optical transponders with reduced sensitivity to PMD and CD are described. In one embodiment, an optical transponder comprises a differential group delay (DGD) mitigator integrated within the transponder and optically coupled to an optical input port of the optical transponder, an optical receiver integrated within the optical transponder and optically coupled to the DGD mitigator and to an electrical output port of the transponder, and a multi-level transmitter integrated within the optical transponder, where the multi-level transmitter is electrically coupled to an electrical input port and optically coupled to an optical output port of the transponder. In another embodiment, a method comprises receiving and processing an optical input signal using a DGD mitigator integrated within an optical transponder, and receiving an electrical input signal, narrowing the spectrum of the electrical input signal, converting the electrical input signal into an optical output signal, and transmitting the optical output signal.
摘要:
In one exemplary embodiment, a method comprises transmitting an optical signal via the optical line, measuring a relative change in spectral intensity of the optical signal near a clock frequency (or half of that frequency) while varying a polarization of the optical signal between a first state of polarization and a second state of polarization, and using the relative change in spectral intensity of the optical signal to determine and correct the DGD of the optical line. Another method comprises splitting an optical signal traveling through the optical line into a first and second portions having a first and second principal states of polarization of the optical line, converting the first and second portions into a first and second electrical signals, delaying the second electrical signal to create a delayed electrical signal that compensates for a DGD of the optical line, and combining the delayed electrical signal with the first electrical signal to produce a fixed output electrical signal.
摘要:
In one exemplary embodiment, a method comprises transmitting an optical signal via the optical line, measuring a relative change in spectral intensity of the optical signal near a clock frequency (or half of that frequency) while varying a polarization of the optical signal between a first state of polarization and a second state of polarization, and using the relative change in spectral intensity of the optical signal to determine and correct the DGD of the optical line. Another method comprises splitting an optical signal traveling through the optical line into a first and second portions having a first and second principal states of polarization of the optical line, converting the first and second portions into a first and second electrical signals, delaying the second electrical signal to create a delayed electrical signal that compensates for a DGD of the optical line, and combining the delayed electrical signal with the first electrical signal to produce a fixed output electrical signal.
摘要:
In one exemplary embodiment, a method comprises transmitting an optical signal via the optical line, measuring a relative change in spectral intensity of the optical signal near a clock frequency (or half of that frequency) while varying a polarization of the optical signal between a first state of polarization and a second state of polarization, and using the relative change in spectral intensity of the optical signal to determine and correct the DGD of the optical line. Another method comprises splitting an optical signal traveling through the optical line into a first and second portions having a first and second principal states of polarization of the optical line, converting the first and second portions into a first and second electrical signals, delaying the second electrical signal to create a delayed electrical signal that compensates for a DGD of the optical line, and combining the delayed electrical signal with the first electrical signal to produce a fixed output electrical signal.
摘要:
In one exemplary embodiment, a method comprises transmitting an optical signal via the optical line, measuring a relative change in spectral intensity of the optical signal near a clock frequency (or half of that frequency) while varying a polarization of the optical signal between a first state of polarization and a second state of polarization, and using the relative change in spectral intensity of the optical signal to determine and correct the DGD of the optical line. Another method comprises splitting an optical signal traveling through the optical line into a first and second portions having a first and second principal states of polarization of the optical line, converting the first and second portions into a first and second electrical signals, delaying the second electrical signal to create a delayed electrical signal that compensates for a DGD of the optical line, and combining the delayed electrical signal with the first electrical signal to produce a fixed output electrical signal.
摘要:
In one exemplary embodiment, a method comprises transmitting an optical signal via the optical line, measuring a relative change in spectral intensity of the optical signal near a clock frequency (or half of that frequency) while varying a polarization of the optical signal between a first state of polarization and a second state of polarization, and using the relative change in spectral intensity of the optical signal to determine and correct the DGD of the optical line. Another method comprises splitting an optical signal traveling through the optical line into a first and second portions having a first and second principal states of polarization of the optical line, converting the first and second portions into a first and second electrical signals, delaying the second electrical signal to create a delayed electrical signal that compensates for a DGD of the optical line, and combining the delayed electrical signal with the first electrical signal to produce a fixed output electrical signal.
摘要:
In one exemplary embodiment, a method comprises transmitting an optical signal via the optical line, measuring a relative change in spectral intensity of the optical signal near a clock frequency (or half of that frequency) while varying a polarization of the optical signal between a first state of polarization and a second state of polarization, and using the relative change in spectral intensity of the optical signal to determine and correct the DGD of the optical line. Another method comprises splitting an optical signal traveling through the optical line into a first and second portions having a first and second principal states of polarization of the optical line, converting the first and second portions into a first and second electrical signals, delaying the second electrical signal to create a delayed electrical signal that compensates for a DGD of the optical line, and combining the delayed electrical signal with the first electrical signal to produce a fixed output electrical signal.
摘要:
In one exemplary embodiment, a method comprises transmitting an optical signal via the optical line, measuring a relative change in spectral intensity of the optical signal near a clock frequency (or half of that frequency) while varying a polarization of the optical signal between a first state of polarization and a second state of polarization, and using the relative change in spectral intensity of the optical signal to determine and correct the DGD of the optical line. Another method comprises splitting an optical signal traveling through the optical line into a first and second portions having a first and second principal states of polarization of the optical line, converting the first and second portions into a first and second electrical signals, delaying the second electrical signal to create a delayed electrical signal that compensates for a DGD of the optical line, and combining the delayed electrical signal with the first electrical signal to produce a fixed output electrical signal.
摘要:
In one exemplary embodiment, a method comprises transmitting an optical signal via the optical line, measuring a relative change in spectral intensity of the optical signal near a clock frequency (or half of that frequency) while varying a polarization of the optical signal between a first state of polarization and a second state of polarization, and using the relative change in spectral intensity of the optical signal to determine and correct the DGD of the optical line. Another method comprises splitting an optical signal traveling through the optical line into a first and second portions having a first and second principal states of polarization of the optical line, converting the first and second portions into a first and second electrical signals, delaying the second electrical signal to create a delayed electrical signal that compensates for a DGD of the optical line, and combining the delayed electrical signal with the first electrical signal to produce a fixed output electrical signal.
摘要:
In one exemplary embodiment, a method comprises transmitting an optical signal via the optical line, measuring a relative change in spectral intensity of the optical signal near a clock frequency (or half of that frequency) while varying a polarization of the optical signal between a first state of polarization and a second state of polarization, and using the relative change in spectral intensity of the optical signal to determine and correct the DGD of the optical line. Another method comprises splitting an optical signal traveling through the optical line into a first and second portions having a first and second principal states of polarization of the optical line, converting the first and second portions into a first and second electrical signals, delaying the second electrical signal to create a delayed electrical signal that compensates for a DGD of the optical line, and combining the delayed electrical signal with the first electrical signal to produce a fixed output electrical signal.