Abstract:
A method and apparatus are provided for use in a transceiver of a wireless system that enable analog mode operations to be performed using in-phase (I) and quadrature (Q) values. The apparatus comprises a processor that performs FM modulation to generate I, Q pairs when operating in the analog mode. When transmitting in the analog mode, the processor encodes a digital representation of the signal to be transmitted into I, Q pairs and outputs the I, Q pairs to a digital-to-analog converter (DAC) comprised by the apparatus. The DAC converts the digital I, Q pairs into analog signals and outputs the analog signals to a cosine wave generator, which generates an in-phase cosine wave and an out-of-phase cosine wave having amplitudes that are proportional to the I and Q values, respectively. The cosine waves are summed for transmission over air. When receiving in the analog mode, a digital down converter converts the received signal into digital I and Q values. The processor then demodulates the I and Q values into a digital representation of the received signal to extract the signal content. When transitioning from transmitting data to transmitting audio, and vice versa, the processor ensures that abrupt changes in the phases of the I, Q pairs do not occur.
Abstract:
A method and apparatus are provided for use in a transceiver of a wireless system that enable analog mode operations to be performed using in-phase (I) and quadrature (Q) values. When operating in the analog mode, the apparatus comprises a processor that receives digital I, Q pairs relating to audio or data signals and performs FM demodulation to generate information content relating to the audio or data signals. When receiving data in the analog mode, the data is in a particular format.
Abstract:
A methodology is disclosed for processing image data to extract image information of interest from aggregate image information containing other interfering information. Application of the methodology also leads to significant compression in the data, which reduces storage requirements. With the methodology of the invention, an augmented linear decomposition of the image data is performed. Thereafter, components of the image data corresponding to a baseline image, image information introduced by non-regular extraneous factors, and image information related to random noise are removed from the data by suppression of appropriate terms of the linear decomposition. The image data so reduced may contain both image information of interest and image data related to regularly occurring extraneous factors. The image data of interest is removed from such reduced aggregate image data by frequency domain filtering of the reduced aggregate data.
Abstract:
A system and method are disclosed for detecting an event-related signal among noise, where the system includes memory for storing measurement values and may include a processor for generating residual values associated with the measurement values, and for detecting the event-related signal using the residual values.
Abstract:
A methodology is disclosed for processing image data to extract image information of interest from aggregate image information containing other interfering information. Application of the methodology also leads to significant compression in the data, which reduces storage requirements. With the methodology of the invention, an augmented linear decomposition of the image data is performed. Thereafter, components of the image data corresponding to a baseline image, image information introduced by non-regular extraneous factors, and image information related to random noise are removed from the data by suppression of appropriate terms of the linear decomposition. The image data so reduced may contain both image information of interest and image data related to regularly occurring extraneous factors. The image data of interest is removed from such reduced aggregate image data by frequency domain filtering of the reduced aggregate data.
Abstract:
There is disclosed a method for processing a time-varying signal to produce a high-resolution spectrogram that represents power as a function of both frequency and time. Data blocks of a time series, which represents of a sampled signal, are subjected to processing which results in a sequence of frequency-dependent functions referred to as eigencoefficients. Each eigencoefficient represents signal information projected onto a local frequency domain using a respective one of K Slepian sequences or Slepian functions. The spectrogram is derived from time- and frequency-dependent expansions formed from the eigencoefficients.
Abstract:
Problems of fading in a multi-path environment are ameliorated, and the presence of reflective surfaces is turned from a disadvantage to an advantage, by employing a third polarization direction that effectively creates a third communication channel. This third communication channel can be used to send more information, or to send information with enhanced spatial diversity to thereby improve the overall communication performance. A transmitted signal with three polarization directions is created with a transmitter having, illustratively, three dipole antennas that are spatially orthogonal to each other. A received signal having energy content in three polarization directions is detected by a receiver having, illustratively, three dipole antennas that are spatially orthogonal to each other.