摘要:
Embodiments of the present invention relate to systems, methods and computer storage media for detecting user input in an extended interaction space of a device, such as a handheld device. The method and system allow for utilizing a first sensor of the device sensing in a positive z-axis space of the device to detect a first input, such as a user's non-device-contacting gesture. The method and system also contemplate utilizing a second sensor of the device sensing in a negative z-axis space of the device to detect a second input. Additionally, the method and system contemplate updating a user interface presented on a display in response to detecting the first input by the first sensor in the positive z-axis space and detecting the second input by the second sensor in the negative z-axis space.
摘要:
Displaying the relative depth of 2D image objects while preserving the visual attributes of the objects is disclosed. After an object group is determined, the members of the object group are temporarily moved away from a center location while preserving the object group members' positions relative to each other in the X-Y plane. A depth well is displayed at the center location and each object group member is connected to a ring-beam in the depth well. In response to a control action indicating a relative depth adjustment of an object group member relative to the remaining object group members, the depth of the object relative to the remaining object group members is changed. In response to a control action indicating the depth adjustment is complete, object group members are returned to their original positions in the X-Y plane with the adjusted object displayed at the object's new relative depth. Dragging object group member into the upper or lower part of another group member are control actions indicating a relative depth adjustment of an object group member.
摘要:
A computer system and for displaying a static animation image in response to an action related to a displayed object that occurs on the computer system is presented. An initial state of the displayed object is determined with regard to the action. A final state of the displayed object with regard to the action is also determined. Transition aspects between the initial state and the final state are then determined. A static animation image is generated according to the initial state, the transition aspects, and the final state. The static animation image represents, in static form, an animation indicative of the action from the initial state to the final state of the displayed object. The static animation image is displayed on the graphical user interface in lieu of animation.
摘要:
Providing axonometric views of layers containing objects while preserving the visual attributes of the objects is disclosed. A group of objects, e.g., overlapping objects, is determined. Layer dimensions are calculated such that each object in the group is encompassed by a layer. Objects are placed in the layers and the layers are displayed in axonometric views. Visual cues to indicate selected layers are provided. Controls to adjust the depth of the layers and to enable moving objects in the selected layer are also provided.
摘要:
A method for managing windows in a display is disclosed. The method comprises forming clippings for windows located in a focal region of a display; displaying the clippings in a peripheral region of the display; hiding the windows in the focal region of the display; indicating the states of the clippings; and in response to a user action, displaying the windows and hiding the clippings. A clipping comprises an image of a region of a window and an icon. A clipping is formed when a window is dragged from the focal region into the peripheral region or when the minimize button of a window is clicked. A clipping list is formed when a clipping is moved near another clipping. A clipping moved near a clipping list is inserted into the clipping list. Indicating the change state of a clipping comprises detecting that the contents of the clipping are changing; providing a visual cue for the clipping; changing the appearance of the visual cue in response to detecting that the contents of the clipping are no longer changing; and removing the visual cue in response to a user action. The change state of a clipping in a clipping list is propagated to the clipping list.
摘要:
A method, system and article of manufacture for providing a spy-resistant keyboard. The spy-resistant keyboard provides a user with additional protection against unauthorized observers while the user is interfacing with a system implementing the spy-resistant keyboard. The keyboard may include a number of tiles with a number of user-selectable characters randomly associated with each tile. A spy-resistant keyboard may also include a number of movable tiles with user-selectable characters. Before a user selects a user-selectable associated with one of the tiles, all the user-selectable characters in the tiles are at least blanked to avoid unauthorized viewing of a chosen tile.
摘要:
A method, system and article of manufacture for providing a spy-resistant keyboard. The spy-resistant keyboard provides a user with additional protection against unauthorized observers while the user is interfacing with a system implementing the spy-resistant keyboard. The keyboard may include a number of tiles with a number of user-selectable characters randomly associated with each tile. A spy-resistant keyboard may also include a number of movable tiles with user-selectable characters. Before a user selects a user-selectable associated with one of the tiles, all the user-selectable characters in the tiles are at least blanked to avoid unauthorized viewing of a chosen tile.
摘要:
A method for classifying brain states in electroencephalograph (EEG) signals comprising building a classifier model and classifying brain states using the classifier model is described. Brain states are determined. Labeled EEG data is collected and divided into overlapping time windows. The time dimension is removed from each time window. Features are generated by computing the base features; combining the base features to form a larger feature set; pruning the large feature set; and further pruning the feature set for a particular machine learning technique. Brain states in unlabeled EEG data are classified using the classifier model by dividing the unlabeled EEG data into overlapping time windows and removing the time dimension from each time window. Features required by the classifier model are generated. Artifacts in the labeled and unlabeled EEG data comprise cognitive artifacts and non-cognitive artifacts.