摘要:
A monitoring and control system for monitoring the boil states of the contents of a cooking utensil located on a cooking surface of a cooktop, indicating the state to a user, and controlling the energy applied to the cooking surface, which may be a glass ceramic. The system includes at least one controllable heat source located below the lower surface of the cooktop so as to heat the cooktop and cooking utensil, at least one sensor located in proximity to the cooktop, which senses the temperature of at least one of the cooktop and the cooking utensil, at least one power indicative signal, and a signal processing device receiving a temperature signal from the sensor, and the power indicative signal. The signal issued by the sensor is representative of the temperature of either the cooktop, or the cooking utensil. In one embodiment the signal processing device detects a plateau in the sensor and power indicative signals, which is indicative of the boiling of the contents of the cooking utensil, or an increase in the rise of the sensor signal, which is indicative of a boil-dry condition in the cooking utensil. The signal processing device optionally is connected to a control device which automatically reduces the temperature of the heat source upon the occurrence of these conditions, or which provides an indication to the user that such conditions have occurred. Determining the boil states, such as boiling, boil-over and boil-dry for the contents of a cooking utensil on a glass ceramic cooktop is achieved by noting that a characteristic response exists in the signal generated by a temperature indicative sensor or the power indicative signal as the temperature of the contents of a cooking utensil on a glass ceramic cooktop approaches a boiling point.
摘要:
A system for automatically controlling the temperature of the cooking surface of a cooking surface of a solid-surface cooktop and, consequently, the temperature of the cooking utensil on the cooking surface, by detecting cooking utensil-related properties through the solid-surface cooktop. The cooking utensil-related properties include presence/absence, removal/placement, and other physical properties such as utensil type, size, warpage, and temperature and load size. Automatic control is based on monitoring the heat transfer characteristics from the energy source to the cooktop and the utensil to infer the utensil properties. This is achieved by sensing or inferring a parameter indicative of the temperature of a monitored area that includes at least a portion of the cooktop or of the cooking utensil placed on the upper surface of a cooktop, as well as a parameter indicative of power applied to a controllable heat source, and detecting signal properties using an evolutionary algorithm.
摘要:
A cooking range with an acoustic sensing system for determining the boil state of the contents of a cooking utensil. The acoustic sensing system, which includes at least one acoustic sensor, is positioned on or in the cooking appliance to detect acoustic emissions in one or more specific ranges of frequencies that are characteristic of emissions resulting from the heating and boiling of liquids in a variety of cooking utensils or vessels.
摘要:
The present invention provides a method of determining the boil states of a liquid as measured by an acoustic sensor which measures the acoustic signal generated by the liquid as it is heated. The acoustic signal is smoothed and a first derivative of the acoustic signal is calculated. Also the frequency of the acoustic signal is measured. Derivative inflection points, zero slope points, and acoustic signal frequencies are utilized to determine the pre-simmer, simmer, pre-boil, boil, boil dry, and boil over states of the liquid.
摘要:
A glass-ceramic cooktop appliance having at least one burner assembly disposed under a glass-ceramic plate. The cooktop appliance includes a sensor assembly having a support bar mounted on the burner assembly adjacent to the glass-ceramic plate and one or more devices for sensing cooktop related properties mounted on the support bar so as to be in contact with the glass-ceramic plate.
摘要:
A system is provided for detecting cooking utensil-related properties through a solid-surface cooktop, including the presence/absence, removal/placement, and other properties (e.g., size) of a cooking utensil on the cooktop. An energy source heats the contents of a cooking utensil placed on the cooktop; and an optical radiation source is controlled to provide an interrogation scheme for detecting the utensil properties. The utensil property detecting system may be part of a monitoring system for monitoring the properties of the cooking utensil, or may be part of a control system for controlling the energy source based on the detected utensil properties, or both.
摘要:
A sensor assembly for a glass-ceramic cooktop appliance having at least one burner assembly disposed under a glass-ceramic plate. The sensor assembly includes an optical detector arranged to receive radiation from the glass-ceramic plate and produce an output signal corresponding to a cooktop related property of the glass-ceramic plate. A controller is provided to receive the output signal from the optical detector. The controller includes means for making a correction to said output signal for corruptive flux incident on the optical detector.
摘要:
A sensor assembly for glass-ceramic cooktop appliances includes an optical detector having an reference component and an active component. The active component is arranged to receive radiation from the glass-ceramic plate, and the reference component is insulated from radiation from the glass-ceramic plate. The sensor assembly further includes a temperature sensor and a heater located adjacent to the reference component and a controller having a first input connected to the optical detector and a second input connected to the temperature sensor. The controller is responsive to the optical detector and the temperature sensor to calibrate the sensor assembly. Calibration is accomplished by noting the temperature reading of the temperature sensor after the burner assembly has not been used for a predetermined period of time to obtain a first calibration point. Then, the burner assembly is activated so that the temperature of the glass-ceramic plate is raised, and the output of the optical detector is noted. Next, an exciting circuit is used to heat the reference component. When the output of the optical detector reaches zero, the temperature reading of the temperature sensor is noted and used with the noted optical detector output to obtain a second calibration point. The first and second calibration points are used to calibrate the sensor assembly.
摘要:
An apparatus that determines properties of a cooktop is provided. The cooktop includes a cooktop surface and a vessel that is selectively placed on the cooktop surface. The apparatus comprises a radiation sensor positioned below the cooktop surface. The radiation sensor senses at least a portion of, at least one of reflected radiation and ambient radiation that are provided above the cooktop surface and that pass through the cooktop surface. The radiation sensor also generates a detected radiation signal based on the sensed radiation. A processor is connected to the radiation sensor, and the processor determines properties of the cooktop from analyzing the detected radiation signal.
摘要:
A system is disclosed for determining the temperature of a cooktop having an upper surface and a lower surface. At least one controllable energy source is located below the lower surface of the cooktop to heat the area above the energy source on the cooktop, and at least one sensor with at least one detector to detect infrared radiation from the cooktop above the energy source. The level of infrared radiation is representative of the temperature of the cooktop, which may be glass ceramic. The sensor provides a signal indicative of the temperature of the cooktop which is then used to control the energy source in order to protect the cooktop from extreme temperatures. The signal may be alternatively utilized to provide an indication of a hot cooktop surface after the energy sources have been turned off. The signal optionally is also utilized to provide automatic control of the energy source to maintain a predetermined temperature, or to prevent exceeding a maximum temperature.