Abstract:
The present invention relates to a method and an arrangement for recovery of at least one organic acid from a dilute aqueous solution thereof. In this method a complex between said organic acid and an extractant is formed by contacting the solution with a reactive extractant and dissolving the formed complex into said extractant thus forming an extractant phase. The organic acid is removed from the formed complex by esterification using an alcohol.
Abstract:
The invention relates to a gypsum product which consists of essentially intact crystals having a size of between 0.1 and below 2.0 μm. The product is especially suitable as a coating pigment or filler in paper manufacture. The invention also relates to a process for the preparation of a gypsum product, wherein calcium sulphate hemihydrate and/or calcium sulphate anhydrite, water and a crystallization habit modifier are contacted so that the calcium sulphate hemihydrate and/or calcium sulphate anhydrite and the water are reacted with each other and form a crystalline gypsum product. The calcium sulphate hemihydrate and/or calcium sulphate anhydrite is/are used in such an amount that the reaction mixture formed from the calcium sulphate hemihydrate and/or calcium sulphate anhydrite, the water and the crystallization habit modifier has a dry matter content of between 50 and 84% by weight. Then, said gypsum product can be formed which consists of essentially intact crystals having a size of between 0.1 and below 2.0 μm.
Abstract:
In a method for preparing formic acid, methyl formate is prepared with methanol as a reactant. In the method, methyl formate obtained from methanol in a reaction is fed through an ion exchange bed, in which the hydrolysis into formic acid and methanol and the separation of formic acid from methanol take place simultaneously by means of the catalytic and adsorbent properties of a solid in exchange material in the ion exchange bed
Abstract:
Processes for the recovery of formate salt from biomass and the product obtained thereof generally include subjecting an aqueous liquid mixture containing levulinic acid, formic acid and possibly furfural to a liquid-liquid extraction process, followed by the recovery of the furfural, the formate salt and the levulinic acid or the levulinate salt.
Abstract:
Processes for forming high iron content ferric chloride solutions, reconstituting ferric chloride solutions, and transporting the stable ferric chloride solutions with the high iron content are disclosed.
Abstract:
Processes for forming high iron content ferric chloride solutions, reconstituting ferric chloride solutions, and transporting the stable ferric chloride solutions with the high iron content are disclosed.
Abstract:
Processes for the recovery of formate salt from biomass and the product obtained thereof generally include subjecting an aqueous liquid mixture containing levulinic acid, formic acid and possibly furfural to a liquid-liquid extraction process, followed by the recovery of the furfural, the formate salt and the levulinic acid or the levulinate salt.