Abstract:
A method and apparatus for deploying a plurality of seismic sensor units into a water column is provided. In one embodiment, a marine vessel is provided. The vessel includes a cable storage device disposed on the vessel, a workstation disposed on a deck of the vessel, a ramp at least partially disposed on the deck, and a node storage and handling system disposed on the vessel. The node storage and handling system comprises a cable handler disposed between the cable storage device and the ramp, the cable handler having a cable disposed thereon and the cable defining a cable path passing over the workstation during a node deployment or retrieval operation, a node storage rack positioned between a bow and a stern of the vessel, and at least one conveyor belt to transfer nodes between the workstation and the node storage rack.
Abstract:
An item storage, dispensing, and receiving apparatus includes a frame assembly having a height and length, including at least one section thereof having two opposing side wall sections, wherein each opposing side wall section includes vertically spaced rails disposed on an inner surface thereof such that each rail on a respective side wall section is located opposite a corresponding rail on the opposing side wall section, further wherein the at least one section has an open space fully extending between the vertically spaced rails between the two opposing side wall sections over the height and length, and a conveyance mechanism located within the open space along at least a portion of the length, wherein the conveyance mechanism is movable in a vertical direction in the open space along the height. A method for moving an item in a tiered, spaced relation involves the steps of vertically moving an item conveyance mechanism from a position below a lowest tiered item until it engages the item or from a position above a highest tiered item until it engages the item, and horizontally conveying the engaged item to a location different than the horizontal engagement location of the item.
Abstract:
In one embodiment, a marine vessel is provided. The vessel includes a cable storage device disposed on a deck of the vessel, a workstation disposed on the vessel, a ramp at least partially disposed on the deck, and a node storage and handling system disposed on the vessel. The node storage and handling system comprises a cable handler disposed between the cable storage device and the ramp, the cable handler having a cable disposed thereon and the cable defining a cable path passing over the workstation during a node deployment or retrieval operation, a node storage rack positioned between a bow and a stern of the vessel, and at least one conveyor belt to transfer nodes between the workstation and the node storage rack.
Abstract:
An item storage, dispensing, and receiving apparatus includes a frame assembly having a height and length, including at least one section thereof having two opposing side wall sections, wherein each opposing side wall section includes vertically spaced rails disposed on an inner surface thereof such that each rail on a respective side wall section is located opposite a corresponding rail on the opposing side wall section, further wherein the at least one section has an open space fully extending between the vertically spaced rails between the two opposing side wall sections over the height and length, and a conveyance mechanism located within the open space along at least a portion of the length, wherein the conveyance mechanism is movable in a vertical direction in the open space along the height. A method for moving an item in a tiered, spaced relation involves the steps of vertically moving an item conveyance mechanism from a position below a lowest tiered item until it engages the item or from a position above a highest tiered item until it engages the item, and horizontally conveying the engaged item to a location different than the horizontal engagement location of the item.