Abstract:
Provided is a device for manufacturing a rotor core with less magnetic flux leakage, a method for manufacturing the rotor core, and a rotor structure. Included are a first mold including a fitting recess that fits and holds a laminated iron core in which a magnet is inserted into a magnet insertion hole; a second mold that clamps and seals the laminated iron core together with the first mold; a resin injection unit that is provided to the second mold and injects a resin material in the magnet insertion hole by using a molding machine; and a protrusion that is inserted into the magnet insertion hole by a predetermined insertion amount, and positions and holds the magnet by an end of the magnet being brought into contact with the protrusion, in a state of the first mold and the second mold being clamped.
Abstract:
Provided is a device for manufacturing a rotor core with less magnetic flux leakage, a method for manufacturing the rotor core, and a rotor structure. Included are a first mold including a fitting recess that fits and holds a laminated iron core in which a magnet is inserted into a magnet insertion hole; a second mold that clamps and seals the laminated iron core together with the first mold; a resin injection unit that is provided to the second mold and injects a resin material in the magnet insertion hole by using a molding machine; and a protrusion that is inserted into the magnet insertion hole by a predetermined insertion amount, and positions and holds the magnet by an end of the magnet being brought into contact with the protrusion, in a state of the first mold and the second mold being clamped.
Abstract:
Provided is a device for manufacturing a rotor core with less magnetic flux leakage, a method for manufacturing the rotor core, and a rotor structure. Included are a first mold including a fitting recess that fits and holds a laminated iron core in which a magnet is inserted into a magnet insertion hole; a second mold that clamps and seals the laminated iron core together with the first mold; a resin injection unit that is provided to the second mold and injects a resin material in the magnet insertion hole by using a molding machine; and a protrusion that is inserted into the magnet insertion hole by a predetermined insertion amount, and positions and holds the magnet by an end of the magnet being brought into contact with the protrusion, in a state of the first mold and the second mold being clamped.
Abstract:
Provided is a device for manufacturing a rotor core with less magnetic flux leakage, a method for manufacturing the rotor core, and a rotor structure. Included are a first mold including a fitting recess that fits and holds a laminated iron core in which a magnet is inserted into a magnet insertion hole; a second mold that clamps and seals the laminated iron core together with the first mold; a resin injection unit that is provided to the second mold and injects a resin material in the magnet insertion hole by using a molding machine; and a protrusion that is inserted into the magnet insertion hole by a predetermined insertion amount, and positions and holds the magnet by an end of the magnet being brought into contact with the protrusion, in a state of the first mold and the second mold being clamped.
Abstract:
A motor cooling fan unit comprises a tubular cover capable of surrounding a motor and a fan provided to blow air toward the interior of the cover. The motor cooling fan unit is configured to cause air blown from the fan to pass through a flow path between the motor and the cover. The cover comprises an exhaust part provided at a downstream area of the flow path. The exhaust part comprises: an open part for making the flow path communicate with the outside; and an exhaust adjusting member provided for the open part and movable between a shield position at which the exhaust adjusting member covers the open part and an open position at which the exhaust adjusting member opens the open part. The amount of movement of the exhaust adjusting member is adjusted to allow adjustment of the amount of the air in the flow path to be exhausted through the open part and a direction of the exhaust, or adjustment of the amount of the air to be exhausted or a direction of the exhaust.
Abstract:
A control apparatus includes, a first calculating unit which calculates first d-phase and q-phase current limit candidate values, a second calculating unit which calculates second d-phase and q-phase current limit candidate values, a q-phase unit which, when the absolute value of the first d-phase current limit candidate value is smaller than that of the second d-phase current limit candidate value, sets the first q-phase current limit candidate value as a q-phase current limit value, but otherwise sets the second q-phase current limit candidate value as the q-phase current limit value, and a d-phase unit which, when the absolute value of the first d-phase current limit candidate value is smaller than that of the second d-phase current limit candidate value, sets the first d-phase current limit candidate value as a d-phase current limit value, but otherwise sets the second d-phase current limit candidate value as the d-phase current limit value.
Abstract:
Provided is a manufacturing device for a rotor core and a manufacturing method for a rotor core in which it is possible to suitably fit a columnar core rod into a center hole of a laminated iron core, when fitting and installing the laminated iron core into a fitting recess of a first mold. A device for manufacturing a rotor core includes: a first mold; a second mold that engages with the first mold and clamps and seals the laminated iron core together with the first mold; a resin injection unit that is provided to the second mold and injects a resin material in the magnet insertion hole by using a molding machine; and a guide plate that has a through hole into which the core rod is inserted and is mounted at one end of the laminated iron core in such a manner that the through hole is in communication with the center hole of the laminated iron core, in which the guide plate has an opening diameter of the through hole on one surface side of one end side of the laminated iron core that is substantially the same as an opening diameter of the center hole, and an opening diameter of the through hole on the other side on the side of the first mold is larger than an opening diameter on the one surface side.
Abstract:
Provided is a manufacturing device and a manufacturing method for a rotor core that can prevent damage from being caused to an end of a magnet due to movement of the magnet when injecting a resin material. Included are a first mold including a fitting recess that fits and holds a laminated iron core in which a magnet is inserted into a magnet insertion hole, a second mold that is engaged with the first mold and clamps and seals the laminated iron core together with the first mold, a resin injection unit that is provided to the second mold, and injects a resin material into the magnet insertion hole, and a magnet positioning and holding mechanism that positions and holds the magnet in a state of being fit into the fitting recess of the first mold.
Abstract:
A control apparatus includes, a first calculating unit which calculates first d-phase and q-phase current limit candidate values, a second calculating unit which calculates second d-phase and q-phase current limit candidate values, a q-phase unit which, when the absolute value of the first d-phase current limit candidate value is smaller than that of the second d-phase current limit candidate value, sets the first q-phase current limit candidate value as a q-phase current limit value, but otherwise sets the second q-phase current limit candidate value as the q-phase current limit value, and a d-phase unit which, when the absolute value of the first d-phase current limit candidate value is smaller than that of the second d-phase current limit candidate value, sets the first d-phase current limit candidate value as a d-phase current limit value, but otherwise sets the second d-phase current limit candidate value as the d-phase current limit value.
Abstract:
In accordance with the present invention, there is provided a cooling plate including a plurality of plate members stacked on one another between an electric motor and a coupled body to which the electric motor is coupled, wherein at least one of the plurality of plate members has a penetration groove extending through the plate member in a thickness direction and extending in the plate member in a plane direction orthogonal to the thickness direction, the penetration groove defining a coolant supply channel for supplying a coolant.