DEVICE FOR MEASURING A DISTANCE AND METHOD FOR MEASURING SAID DISTANCE

    公开(公告)号:US20190018118A1

    公开(公告)日:2019-01-17

    申请号:US16031640

    申请日:2018-07-10

    Abstract: Measuring device (1) suited to measure the distance (d) of a reference object (O), configured so that it performs a plurality of measuring operations (Ai) in succession and comprising emission means (2) suited to emit a light radiation (R), receiving means (3) comprising a sensitive area (31) which is sensitive to the light radiation (R) and which is provided with a number M of sensitive units (4), each one of the sensitive units (4) being configured to generate an electrical signal (S), a first processing unit (5) comprising Ne processing elements (6), each one of said Ne processing elements (6) being configured to receive the electrical signal (S) for determining the time of impact (t) of a photon (F) on the sensitive units (4) and for calculating the value of said distance (d). The measuring device (1) comprises a second processing unit (7) configured to receive the electrical signals (S), processing the electrical signals (S) in such a way as to select a number Nu of sensitive units (4) impacted by the photons (F), associating each one of the Nu sensitive units (4) to one of the Ne processing elements (6), in such a way that, at the moment of the successive measuring operation (Ai+1), the distance (d) is determined by each one of the Nu sensitive units (4) selected.

    OPTOELECTRONIC SENSOR AND METHOD FOR MEASURING A DISTANCE

    公开(公告)号:US20190018117A1

    公开(公告)日:2019-01-17

    申请号:US16031625

    申请日:2018-07-10

    Abstract: An optoelectronic sensor (10) for measuring a distance of an object (18) in accordance with a time of flight principle comprises a light transmitter (12) for transmitting a light signal (14), a light receiver (22) for receiving the light signal (20) after reflection or remission by the object (18), the light receiver (22) having a first plurality of pixel elements (24, 24a) each configured as an avalanche photo diode element biased with a bias voltage greater than a breakdown voltage and thus operated in a Geiger mode in order to trigger an avalanche event upon light reception, a distance measuring unit (34) having a second plurality of time of flight measuring units (34a) connected to pixel elements (24a) for determining a time of flight between transmission and reception of a light signal, the second plurality being less than the first plurality, switching means (32, 32a) for connecting selected pixel elements (24a) to time of flight measuring units (34a) in a one-to-one fashion, and a pixel selection unit (28, 30) for determining pixel elements (24a) to be connected by the switching means (32, 32a) based on an intensity measurement.

Patent Agency Ranking