Abstract:
Methods and systems are provided for a fastening assembly. In one example, the fastening assembly includes a vibration dampening element, a two-piece insert, a lower portion, and a fastener configured to engage with the two-piece insert and the lower portion of the assembly. The fastening assembly may be at least partially assembled during manufacture of components to be coupled via the fastening assembly, allowing the components to be readily coupled during final installation of the fastening assembly.
Abstract:
Methods and systems are provided for a fastening assembly. In one example, the fastening assembly includes a vibration dampening element, a two-piece insert, a lower portion, and a fastener configured to engage with the two-piece insert and the lower portion of the assembly. The fastening assembly may be at least partially assembled during manufacture of components to be coupled via the fastening assembly, allowing the components to be readily coupled during final installation of the fastening assembly.
Abstract:
An intake manifold for an internal combustion engine comprises upper and lower shell members with outer flanges. The shell members define a manifold cavity having a plenum and a plurality of runners. The upper shell includes an upper post formed as an indentation into the plenum with a tunnel wall and a terminus wall. The lower shell includes a lower post formed as an indentation into the plenum with a tunnel wall and a terminus wall. The terminus walls are attached to provide a brace across the plenum. One of the posts includes an orifice penetrating the tunnel wall. A sealed coupler extends from the one post and is adapted to receive a secondary gas for mixing within the plenum. Thus, secondary gases can be introduced without additional structures that could impede gas flow and could increase manufacturing cost.