Abstract:
A resonant power conversion apparatus and a controlling method of the resonant power conversion apparatus are provided. The resonant power conversion apparatus includes a switch-based resonant converter and a controller. The switch-based resonant converter is configured to supply power to a load. The controller is coupled to the switch-based resonant converter and the load and configured to control switching of the switch-based resonant converter to regulate power conversion of the switch-based resonant converter. The controller has a voltage control loop and a current control loop. The controller detects a driving state of the load and enables one of the voltage control loop and the current control loop according to the detection result to adjust a switching frequency of the switch-based resonant converter.
Abstract:
A resonant converter and its controlling method are provided. The resonant converter includes a bridge switching circuit receiving a DC input voltage through its power terminal, a resonant and transforming circuit, a rectifying and filtering circuit, and an over-current protecting circuit. The resonant and transforming circuit has at least one resonant capacitor charged/discharged in response to the switching of the bridge switching circuit. The rectifying and filtering circuit rectifies and filters outputs of the resonant and transforming circuit, and generates a driving voltage accordingly. The over-current protecting circuit is coupled to the power terminal and crosses over the resonant capacitor to form a clamp path. The over-current protecting circuit detects a current flowing through the resonant and transforming circuit or a load and determines whether to conduct/cut off the clamp path according to the detection result to limit a cross voltage of the resonant capacitor within a first voltage range.
Abstract:
A resonant converter and its controlling method are provided. The resonant converter includes a bridge switching circuit receiving a DC input voltage through its power terminal, a resonant and transforming circuit, a rectifying and filtering circuit, and an over-current protecting circuit. The resonant and transforming circuit has at least one resonant capacitor charged/discharged in response to the switching of the bridge switching circuit. The rectifying and filtering circuit rectifies and filters outputs of the resonant and transforming circuit, and generates a driving voltage accordingly. The over-current protecting circuit is coupled to the power terminal and crosses over the resonant capacitor to form a clamp path. The over-current protecting circuit detects a current flowing through the resonant and transforming circuit or a load and determines whether to conduct/cut off the clamp path according to the detection result to limit a cross voltage of the resonant capacitor within a first voltage range.
Abstract:
A parallel resonant converter including a control circuit and at least two resonant conversion circuits connected in parallel between an input bus and an output bus is provided by the invention. The control circuit is configured to provide a switching frequency signal to the at least two resonant conversion circuits. Moreover, the control circuit is further configured to control the voltage of the output bus to linearly vary along with the switching frequency signal in a rated range by using a linear current-balancing curve (gain-frequency), and thus achieving the purpose of current-balancing for the at least two resonant conversion circuits. The invention is capable of controlling the output voltage of the parallel resonant converter, so as to reduce the ripple on the output voltage of the power supply system.
Abstract:
A resonant power conversion apparatus and a controlling method of the resonant power conversion apparatus are provided. The resonant power conversion apparatus includes a switch-based resonant converter and a controller. The switch-based resonant converter is configured to supply power to a load. The controller is coupled to the switch-based resonant converter and the load and configured to control switching of the switch-based resonant converter to regulate power conversion of the switch-based resonant converter. The controller has a voltage control loop and a current control loop. The controller detects a driving state of the load and enables one of the voltage control loop and the current control loop according to the detection result to adjust a switching frequency of the switch-based resonant converter.
Abstract:
A parallel resonant converter including a control circuit and at least two resonant conversion circuits connected in parallel between an input bus and an output bus is provided by the invention. The control circuit is configured to provide a switching frequency signal to the at least two resonant conversion circuits. Moreover, the control circuit is further configured to control the voltage of the output bus to linearly vary along with the switching frequency signal in a rated range by using a linear current-balancing curve (gain-frequency), and thus achieving the purpose of current-balancing for the at least two resonant conversion circuits. The invention is capable of controlling the output voltage of the parallel resonant converter, so as to reduce the ripple on the output voltage of the power supply system.