Abstract:
A planographic printing plate precursor includes: a support; and an image recording layer which includes a radical initiator, a radical polymerizable component, and a radiation absorption compound, and in which the image recording layer shows two or more peaks of a radical generation amount in a radical generation amount-versus-time curve after exposure to image forming radiation, in which the radical initiator includes an electron-donating radical initiator and an electron-accepting radical initiator, and the radiation absorption compound comprises a compound represented by the following Formula 1.
Abstract:
Provided are a feature quantity calculating method, a feature quantity calculating program, and a feature quantity calculating device which enable calculation of a feature quantity accurately showing chemical properties of a target structure, a screening method, a screening program, and a screening device which enable efficient screening of a pharmaceutical candidate compound using a feature quantity, and a compound creating method, a compound creating program, and a compound creating device which enable efficient creation of a three-dimensional structure of a pharmaceutical candidate compound using a feature quantity. Since the chemical properties of target structures are exhibited as the result of an interaction between the target structure and probes in the periphery thereof, the fact that the degree of accumulation of the probes is similar between target structures indicates that the chemical properties of the target structures are similar. Therefore, the feature quantity accurately showing the chemical properties of the target structure can be calculated using the feature quantity calculating method according to one aspect of the present invention.
Abstract:
According to one embodiment of the present invention, provided are a feature quantity calculating method which enables calculation of a feature quantity accurately showing chemical properties of a target structure, a screening method which enables efficient screening of a pharmaceutical candidate compound using a feature quantity, and a compound creating method which enable efficient creation of a three-dimensional structure of a pharmaceutical candidate compound using a feature quantity. In one aspect of the present invention, the feature quantity calculating method is a method including a target structure designating step of designating a target structure formed of a plurality of unit structures having chemical properties, a three-dimensional structure acquiring step of acquiring a three-dimensional structure from the plurality of unit structures for the target structure, and a probe feature quantity calculating step of calculating a feature quantity showing a cross-sectional area of one or more kinds of probes for the target structure, in which the probe is a structure in which a plurality of points having a real electric charge and generating a van der Waals force are disposed to be separated from each other.
Abstract:
A simulation apparatus, including: a coordinate setting unit for setting slow coordinates and fast coordinates based on mass point coordinates; a coordinate extraction unit for obtaining a structure of the fast coordinates by subordinating the fast coordinates to the slow coordinates and obtaining, by taking into account influence of a change in the fast coordinates on the slow coordinates due to a change in the slow coordinates, a structure of the slow coordinates as a function of collective coordinate(s); and an inverse transformation unit for predicting time evolution of the mass point coordinates based on the collective coordinate(s), which can be obtained as a solution of a motion equation, structure of the slow coordinates, and structure of the fast coordinates.
Abstract:
An object of the present invention is to provide a method, a program, and a device which enable calculation of a feature quantity accurately indicating chemical properties of a target structure. Further, another object of the present invention is to provide a method and a program which enable efficient screening of a pharmaceutical candidate compound using a feature quantity. Further, still another object of the present invention is to provide a method which enables efficient creation of a three-dimensional structure of a pharmaceutical candidate compound using a feature quantity. In a case where target structures have a similarity in the degree of accumulation of probes, this indicates that the target structures have similar chemical properties. That is, target structures having similar feature quantities calculated according to the first aspect exhibit similar chemical properties. Therefore, according to the first aspect, the feature quantity accurately showing the chemical properties of a target structure can be calculated.
Abstract:
An object of the present invention is to provide a data processing device, a data processing method, a data processing program, and a non-transitory recording medium capable of appropriately classifying a plurality of pieces of high-dimensional data. In a data processing device according to a first aspect, similarity between pieces of reference data (data allocated to each lattice point) is regarded as an inter-lattice-point distance without assuming a special shape in a lattice point space. Thus, since one lattice point is coupled to all other lattice points (at the inter-lattice-point distance corresponding to the similarity between the pieces of reference data) and there is no “lattice point that is distant geometrically”, information on input data can be reflected on all the lattice points, and the lattice points of substantially the same reference data do not appear at separated locations in the lattice point space. As described above, according to the data processing device of the first aspect, it is possible to appropriately classify the plurality of pieces of high-dimensional data.
Abstract:
Provided are a method for searching for a molecular stable structure, a program for searching for a molecular stable structure, and a device for searching for a molecular stable structure, which are capable of acquiring a stable structure and various locally stable structures from a structural formula of a compound in a short time and with high accuracy. A three-dimensional structure is generated from the structural formula of the compound, and a locally stable structure is obtained from the three-dimensional structure. A one-dimensional or multidimensional energy distribution function for one or a plurality of internal coordinates and a probability distribution function of increasing a probability of low-energy internal coordinates are calculated from internal coordinates and an energy value of the locally stable structure. The method for searching for a molecular stable structure repeats the following processes: generating a three-dimensional structure based on the calculated probability distribution function; acquiring a locally stable structure; reflecting internal coordinates and an energy value of the obtained locally stable structure on the energy distribution function and the probability distribution function; and acquiring the locally stable structure, thereby obtaining a plurality of the locally stable structures and a structure with lowest energy. The program and the device for searching for a molecular stable structure execute the method.
Abstract:
Provided are a feature quantity calculating method, a feature quantity calculating program, and a feature quantity calculating device which enable calculation of a feature quantity accurately showing chemical properties of a target structure, a screening method, a screening program, and a screening device which enable efficient screening of a pharmaceutical candidate compound using a feature quantity, and a compound creating method, a compound creating program, and a compound creating device which enable efficient creation of a three-dimensional structure of a pharmaceutical candidate compound using a feature quantity. Since the chemical properties of the target structures are exhibited as the result of an interaction between the target structure and a probe in the periphery thereof, the fact that the degree of accumulation (feature quantity) of probes is similar between target structures indicates that the chemical properties of the target structures are similar. Therefore, the feature quantity accurately showing the chemical properties of the target structure can be calculated using the feature quantity calculating method according to one aspect of the present invention.
Abstract:
An object of the present invention is to provide a color developing composition which develops colors in a high density and does not significantly discolor when aged, a lithographic printing plate precursor which has excellent plate-inspecting properties by means of color development and is capable of maintaining strong color development even when aged after color development, a plate making method for a lithographic printing plate in which the lithographic printing plate precursor is used, and a new compound that can be preferably used as a color developer.The color developing composition of the present invention includes a compound represented by Formula 1. The compound in the present invention is represented by Formula 1. In Formula 1, R1 represents a group in which an R1—O bond is cleaved by heat or exposure to infrared rays.