Abstract:
A color developing composition containing a compound represented by the Formula (1) as defined herein, a lithographic printing plate precursor including a support and an image-recording layer containing the color developing composition, a method for producing a lithographic printing plate including: exposing the lithographic printing plate precursor in an image pattern; and removing a non-exposed portion in the image-recording layer using at least one of printing ink or dampening water on a printer, and a color developing compound represented by the Formula (1) as defined herein.
Abstract:
The purpose of the present invention is to provide a planographic printing plate precursor which suppresses bleeding or transferring of a substance over time while maintaining edge stain preventing performance, a plate-making method of a planographic printing plate, and a printing method using the planographic printing plate. The planographic printing plate precursor includes a support; and an image recording layer formed on the support, in which layer arrangement described in any one of the following i to iv is provided, a hydrophilizatioin agent layer containing a hydrophilization agent is provided in a region in a specific position of the layer arrangement from the end portion of the planographic printing plate precursor to a portion inside the end portion by 1 cm, and the image recording layer includes an infrared absorbing agent and a specific radical polymerizable compound. i: a mode in which the support layer and the image recording layer are provided in this order. ii: a mode in which the support layer, an undercoat, and the image recording layer are provided in this order. iii: a mode in which the support layer, the image recording layer, and a protective layer are provided in this order. iv: a mode in which the support layer, the undercoat, the image recording layer, and the protective layer are provided in this order.
Abstract:
The invention is directed to a lithographic printing plate precursor including, in the following order: a support; an image-recording layer containing a radical polymerizable compound and a radical polymerization initiator; and a protective layer containing a star polymer, and the star polymer is preferably a polymer in which from 3 to 10 polymer chains are branched from a central skeleton.
Abstract:
There are free radical scavengers of formula (Pm-L)n-Tq. Also provided are negative-working lithographic printing plate precursors comprising a hydrophilic substrate and a NIR photopolymerizable or UV-violet photopolymerizable imageable layer coated on the hydrophilic layer, the imageable layer also being photopolymerizable by visible light, the imageable layer having an outer surface and a thickness, the outer surface of the imageable layer being uniformly, and partially or completely crosslinked down to a depth corresponding to at most about 70% of the thickness of the imageable layer.
Abstract:
An object of the present invention is to provide a color developing composition which develops colors in a high density and does not significantly discolor when aged, a lithographic printing plate precursor which has excellent plate-inspecting properties by means of color development and is capable of maintaining strong color development even when aged after color development, a plate making method for a lithographic printing plate in which the lithographic printing plate precursor is used, and a new compound that can be preferably used as a color developer.The color developing composition of the present invention includes a compound represented by Formula 1. The compound in the present invention is represented by Formula 1. In Formula 1, R1 represents a group in which an R1—O bond is cleaved by heat or exposure to infrared rays.
Abstract:
In various embodiments, a recording medium comprises an oleophilic substrate and, thereover, a topmost oleophobic layer comprising a cured polymeric silicone matrix that consists essentially of the addition-cure reaction product of a vinyl-functional polydialkylsiloxane and a silane cross-linking agent. The vinyl-functional polydialkylsiloxane has a molecular weight ranging from 30,000 to 75,000 or 110,000 to 130,000. If the molecular weight of the vinyl-functional polydialkylsiloxane is within the range of 30,000 to 75,000, the molar ratio of silane groups to vinyl groups is within the range of about 11:1 to about 25:1; and if the molecular weight of the vinyl-functional polydialkylsiloxane is within the range of 110,000 to 130,000, the molar ratio of silane groups to vinyl groups is from about 5:1 to about 27:1. The recording medium may be used as a lithographic printing plate.
Abstract:
A lithographic printing plate precursor which is excellent in both the on-press development property and the printing durability and which is excellent particularly in the on-press development property after preservation for a long period of time, wherein the lithographic printing plate precursor includes an intermediate layer containing a polymer compound including a repeating unit (a1) having a support-adsorbing group and a repeating unit (a2) having a polyoxyalkylene group having a repeating number of oxyalkylene units from 8 to 120 between a support and a polymerizable image-recording layer, and contains a compound having a molecular weight of 1,500 or less and having an oxyalkylene group in at least any of the intermediate layer and the polymerizable image-recording layer.
Abstract:
The invention provides a method of concentrating a waste liquid produced by development, the method including: obtaining a waste liquid produced by: exposing a planographic printing plate precursor, including: an image recording layer including: an infrared absorbing dye, a polymerization initiator, and a polymerizable compound, and a protective layer on a support, and performing a development process by using a developer liquid that contains an anionic surfactant having a naphthalene skeleton and/or a nonionic surfactant having a naphthalene skeleton in an amount of 1-10% by mass, that contains an organic solvent that has a boiling temperature in a range of 100-300° C. in an amount of 2% by mass or less, and that has a pH of 6.0-9.5; and evaporation-concentrating the waste liquid such that [an amount of the waste liquid after the concentration/an amount of the waste liquid before the concentration] is from 1/10 to 1/2 on a volume basis.
Abstract:
An alkali soluble resin is disclosed comprising a first monomeric unit including at least one sulfonamide group and a second monomeric unit derived from the monomer according to the following structure (I) wherein R1 represents a structural moiety comprising an ethylenically unsaturated polymerizable group; R2, R3 and R4 independently represent hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, alkaryl, aralkyl, aryl or heteroaryl group or, the necessary atoms to form a five to eight membered ring.
Abstract translation:公开了包含至少一种磺酰胺基团的第一单体单元和根据以下结构(I)衍生自单体的第二单体单元的碱溶性树脂,其中R 1表示包含烯属不饱和可聚合基团的结构部分; R 2,R 3和R 4独立地表示氢,任选取代的烷基,烯基,炔基,烷芳基,芳烷基,芳基或杂芳基,或形成五至八元环的必要原子。
Abstract:
Ablation-type printing plates having improved exposure sensitivity are produced using an imaging layer—i.e., the plate layer that absorbs and ablates in response to imaging radiation—whose composition includes a large proportion of crosslinker.