HIGH PERFORMANCE GLASS CERAMICS AND METHOD FOR PRODUCING HIGH-PERFORMANCE GLASS CERAMICS
    1.
    发明申请
    HIGH PERFORMANCE GLASS CERAMICS AND METHOD FOR PRODUCING HIGH-PERFORMANCE GLASS CERAMICS 有权
    高性能玻璃陶瓷和生产高性能玻璃陶瓷的方法

    公开(公告)号:US20120157290A1

    公开(公告)日:2012-06-21

    申请号:US13384875

    申请日:2010-07-13

    CPC分类号: C03C10/0027 Y10T428/24

    摘要: The invention relates to a glass ceramic comprising article, wherein the integral, non-post-processed and non-reworked glass ceramic comprising article comprises at least three different types of microstructures. The microstructures differ in the number and/or size of the crystallites contained per unit volume, and/or in the composition of the crystallites, and/or in the composition of the residual glass phases. The different microstructures are characterized by different relative ion content profiles across a cross-section perpendicular to the transition areas. The relative ion content profiles are determined from intensities which are determined using secondary ion mass spectrometry, and each of the three different types of microstructures preferably has different intensity plateaus for individual ions, wherein the individual ions are components of the main crystal phases.

    摘要翻译: 本发明涉及一种包含玻璃陶瓷的制品,其中所述整体的非后加工和未加工的玻璃陶瓷包含制品包括至少三种不同类型的微结构。 微结构在每单位体积和/或微晶组成中和/或残留玻璃相组成中的微晶的数量和/或尺寸不同。 不同的微结构的特征在于垂直于过渡区域的横截面上的不同的相对离子含量分布。 相对离子含量曲线由使用二次离子质谱法确定的强度确定,并且三种不同类型的微结构中的每一种优选具有各个离子的不同强度平台,其中各个离子是主晶相的成分。

    High performance glass ceramics and method for producing high-performance glass ceramics
    2.
    发明授权
    High performance glass ceramics and method for producing high-performance glass ceramics 有权
    高性能玻璃陶瓷及高性能玻璃陶瓷生产方法

    公开(公告)号:US08993464B2

    公开(公告)日:2015-03-31

    申请号:US13384875

    申请日:2010-07-13

    IPC分类号: C03C10/00 C03C10/14

    CPC分类号: C03C10/0027 Y10T428/24

    摘要: The invention relates to a glass ceramic comprising article, wherein the integral, non-post-processed and non-reworked glass ceramic comprising article comprises at least three different types of microstructures. The microstructures differ in the number and/or size of the crystallites contained per unit volume, and/or in the composition of the crystallites, and/or in the composition of the residual glass phases. The different microstructures are characterized by different relative ion content profiles across a cross-section perpendicular to the transition areas. The relative ion content profiles are determined from intensities which are determined using secondary ion mass spectrometry, and each of the three different types of microstructures preferably has different intensity plateaus for individual ions, wherein the individual ions are components of the main crystal phases.

    摘要翻译: 本发明涉及一种包含玻璃陶瓷的制品,其中所述整体的非后加工和未加工的玻璃陶瓷包含制品包括至少三种不同类型的微结构。 微结构在每单位体积和/或微晶组成中和/或残留玻璃相组成中的微晶的数量和/或尺寸不同。 不同的微结构的特征在于垂直于过渡区域的横截面上的不同的相对离子含量分布。 相对离子含量曲线由使用二次离子质谱法确定的强度确定,并且三种不同类型的微结构中的每一种优选具有各个离子的不同强度平台,其中各个离子是主晶相的成分。

    Method for determination of the radiation stability of crystals

    公开(公告)号:US06603547B2

    公开(公告)日:2003-08-05

    申请号:US09975173

    申请日:2001-10-11

    IPC分类号: G01J330

    CPC分类号: G01N21/31

    摘要: The method for determining radiation stability of a crystal to radiation of a working wavelength to be employed in a subsequent application includes taking a first absorption spectrum (A) of a cleaved piece of the crystal with a given thickness (D) over a predetermined wavelength range from a first wavelength (&lgr;1) to a second wavelength (&lgr;2) by means of a spectrophotometer. Then the cleaved piece of the crystal is irradiated with an energetic radiation source so as to form all theoretically possible color centers (saturation). After the irradiating a second absorption spectrum (B) of the cleaved piece of crystal is taken over the same predetermined wavelength range. Then a surface integral of a difference spectrum of the first absorption spectrum and the second absorption spectrum over the predetermined wavelength range is formed and divided by the thickness (D) to obtain a scaled surface integral value. The absorption coefficient &Dgr;k at the working wavelength for the subsequent application is then obtained preferably from the scaled surface integral value for the damage induced by the energetic radiation and a calibration curve relating the absorption coefficient at the working wavelength to the surface integral of the absorption coefficient induced by the energetic radiation.