Abstract:
An ultrasonic catheter includes a body and an ultrasound transmission member disposed in the body. A head is coupled to the ultrasound transmission member, wherein a gap separates the head from a body distal end. A guidewire tube extends through the body and the head. A proximal end connector assembly includes a hub and an absorber member. The hub has a bore coupled to and in fluid communication with the body. The absorber member is disposed within the bore around the ultrasound transmission member. A sonic connector is disposed between the ultrasound transmission member and a separate generator.
Abstract:
Ultrasound catheter devices and methods provide enhanced disruption of blood vessel obstructions. Generally, an ultrasound catheter includes an elongate flexible catheter body with one or more lumens. An ultrasound transmission member or wire extends longitudinally through the catheter body lumen and, in many embodiments, a guide wire tube also extends through the same lumen. A distal head is fixed to or otherwise mechanically coupled with the distal end of the ultrasound transmission member or wire and is positioned adjacent the distal end of the catheter body. Although the distal end of the catheter body overlaps the distal head, the distal head is not directly affixed to the distal end of the catheter body. Thus, the distal tip may move freely, relative to the distal end of the catheter body when ultrasonic energy is applied through the ultrasound transmission member. Such a freely floating distal head enhances the efficiency of an ultrasound catheter, enabling the catheter to ablate calcific occlusions and increasing the useful life of the ultrasound transmission member and catheter.
Abstract:
Ultrasound catheter devices and methods provide enhanced disruption of blood vessel obstructions. Generally, an ultrasound catheter includes an elongate flexible catheter body with one or more lumens. An ultrasound transmission member or wire extends longitudinally through the catheter body lumen and, in many embodiments, a guide wire tube also extends through the same lumen. A distal head is fixed to or otherwise mechanically coupled with the distal end of the ultrasound transmission member or wire and is positioned adjacent the distal end of the catheter body. Although the distal end of the catheter body overlaps the distal head, the distal head is not directly affixed to the distal end of the catheter body. Thus, the distal tip may move freely, relative to the distal end of the catheter body when ultrasonic energy is applied through the ultrasound transmission member. Such a freely floating distal head enhances the efficiency of an ultrasound catheter, enabling the catheter to ablate calcific occlusions and increasing the useful life of the ultrasound transmission member and catheter.
Abstract:
Ultrasound catheter devices and methods provide enhanced disruption of blood vessel obstructions. Generally, an ultrasound catheter includes an elongate flexible catheter body with one or more lumens. An ultrasound transmission member or wire extends longitudinally through the catheter body lumen and, in many embodiments, a guide wire tube also extends through the same lumen. A distal head is fixed to or otherwise mechanically coupled with the distal end of the ultrasound transmission member or wire and is positioned adjacent the distal end of the catheter body. Although the distal end of the catheter body overlaps the distal head, the distal head is not directly affixed to the distal end of the catheter body. Thus, the distal tip may move freely, relative to the distal end of the catheter body when ultrasonic energy is applied through the ultrasound transmission member. Such a freely floating distal head enhances the efficiency of an ultrasound catheter, enabling the catheter to ablate calcific occlusions and increasing the useful life of the ultrasound transmission member and catheter.
Abstract:
An ultrasound catheter includes a catheter body, an ultrasound transmission member, a sonic connector, a constraining member, and a vibrational absorber. The vibrational absorber has an opening through which the ultrasonic transmission member extends. The vibrational absorber is located in a recessed portion of the constraining member. The vibrational absorber is both longitudinally interposed between the constraining member and the distal portion of the sonic connector and laterally interposed between the recessed portion of the constraining member and the ultrasound transmission member. The recessed portion of the constraining member overlaps a portion of an exterior of the distal portion of the sonic connector.
Abstract:
An ultrasound catheter includes a catheter body, an ultrasound transmission member, a sonic connector, a constraining member, and a vibrational absorber. The vibrational absorber has an opening through which the ultrasonic transmission member extends. The vibrational absorber is located in a recessed portion of the constraining member. The vibrational absorber is both longitudinally interposed between the constraining member and the distal portion of the sonic connector and laterally interposed between the recessed portion of the constraining member and the ultrasound transmission member. The recessed portion of the constraining member overlaps a portion of an exterior of the distal portion of the sonic connector.
Abstract:
Ultrasound catheter devices and methods provide enhanced disruption of blood vessel obstructions. Generally, ultrasound catheters include an elongate flexible catheter body with one or more lumens, an ultrasound transmission member extending longitudinally through the catheter body lumen and, in some embodiments, a guidewire tube extending through the lumen. A distal head for disrupting occlusions is coupled with the distal end of the ultrasound transmission member and is positioned adjacent the distal end of the catheter body. Some embodiments include improved features such as a bend in the catheter body for enhancing positioning and/or advancement of the catheter.
Abstract:
Ultrasound catheter devices and methods provide enhanced disruption of blood vessel obstructions. Generally, ultrasound catheters include an elongate flexible catheter body with one or more lumens, an ultrasound transmission member extending longitudinally through the catheter body lumen and, in some embodiments, a guidewire tube extending through the lumen. A distal head for disrupting occlusions is coupled with the distal end of the ultrasound transmission member and is positioned adjacent the distal end of the catheter body. Some embodiments include improved features such as a bend in the catheter body for enhancing positioning and/or advancement of the catheter.
Abstract:
Ultrasound catheter devices and methods provide enhanced disruption of blood vessel obstructions. Generally, ultrasound catheters include an elongate flexible catheter body with one or more lumens, an ultrasound transmission member extending longitudinally through the catheter body lumen and, in some embodiments, a guidewire tube extending through the lumen. A distal head for disrupting occlusions is coupled with the distal end of the ultrasound transmission member and is positioned adjacent the distal end of the catheter body. Some embodiments include improved features such as a bend in the catheter body for enhancing positioning and/or advancement of the catheter.
Abstract:
Ultrasound catheter devices and methods provide enhanced disruption of blood vessel obstructions. Generally, an ultrasound catheter includes an elongate flexible catheter body with one or more lumens. An ultrasound transmission member or wire extends longitudinally through the catheter body lumen and, in many embodiments, a guide wire tube also extends through the same lumen. A distal head is fixed to or otherwise mechanically coupled with the distal end of the ultrasound transmission member or wire and is positioned adjacent the distal end of the catheter body. Although the distal end of the catheter body overlaps the distal head, the distal head is not directly affixed to the distal end of the catheter body. Thus, the distal tip may move freely, relative to the distal end of the catheter body when ultrasonic energy is applied through the ultrasound transmission member. Such a freely floating distal head enhances the efficiency of an ultrasound catheter, enabling the catheter to ablate calcific occlusions and increasing the useful life of the ultrasound transmission member and catheter.