摘要:
A turbine ring assembly includes a ring support structure and a plurality of ring sectors, each including a single piece of ceramic matrix composite material. Each ring sector includes a first portion forming an annular base with an inside face defining an inside face of the turbine ring and an outside face from which there extends two tab-forming portions including ends that are engaged in housings in the ring support structure. The ring sectors present a section that is substantially π-shaped and the ends of the tabs are held without radial clearance by the ring support structure. The tabs can have a free length in meridian section that is not less than three times their mean width.
摘要:
A turbine ring assembly includes a ring support structure and a plurality of ring sectors, each including a single piece of ceramic matrix composite material. Each ring sector includes a first portion forming an annular base with an inside face defining an inside face of the turbine ring and an outside face from which there extends two tab-forming portions including ends that are engaged in housings in the ring support structure. The ring sectors present a section that is substantially π-shaped and the ends of the tabs are held without radial clearance by the ring support structure. The tabs can have a free length in meridian section that is not less than three times their mean width.
摘要:
A turbine ring assembly for a gas turbine comprises a one-piece split ring (10) of ceramic matrix composite (CMC) material, a CMC wedge-shaped part (20) having flanks in contact with the ends of the ring, on either side of the split, so as to close the ring, and an annular metal support structure (40) surrounding the CMC ring and in contact therewith over the major fraction of its outline, the CMC ring being mounted with prestress in the metal structure, at least one element (26) exerting a resilient return force on the wedge-shaped part to keep it in contact with the ends of the CMC ring when the split opens under the effect of differential expansion between the annular metal structure and the CMC ring, and at least one element for preventing the CMC ring from turning about its axis.
摘要:
A support arm (13) is intended to be installed in a radial position in an afterburner device of a bypass turbojet. The device comprises first and second inner annular casings defining a passage for a primary flow and an outer annular casing defining together with the first inner annular casing a passage for a secondary flow. The arm (13) comprises a monobloc structure made of composite material including two integral walls (14, 15), on the one hand, designed to define a groove (16) having a substantially V-shaped profile and, on the other hand, including first end parts (17) joined together and adapted to define a foot (18) and second end parts (19) adapted each to define at least one flange (20, 21) intended to be positively connected to the outer annular casing.
摘要:
A turbine ring assembly for a gas turbine includes a one-piece split ring (10) of ceramic matrix composite (CMC) material, a CMC wedge-shaped part (20) having flanks in contact with the ends of the ring, on either side of the split, so as to close the ring, and an annular metal support structure (40) surrounding the CMC ring and in contact therewith over the major fraction of its outline, the CMC ring being mounted with prestress in the metal structure, at least one element (26) exerting a resilient return force on the wedge-shaped part to keep it in contact with the ends of the CMC ring when the split opens under the effect of differential expansion between the annular metal structure and the CMC ring, and at least one element for preventing the CMC ring from turning about its axis.
摘要:
The gas turbine comprises an annular combustion chamber having inner and outer walls made of ceramic matrix composite material, and a high pressure turbine nozzle secured to a downstream end of the combustion chamber and comprising a plurality of stationary airfoils extending between the inner and outer walls of an annular flow path through the nozzle for the gas stream coming from the combustion chamber. The turbine nozzle is made of ceramic matrix composite material and it is connected to the downstream end of the combustion chamber by brazing.
摘要:
The present invention provides a fixing or sealing ring for maximizing cooling at the end of a combustion chamber wall. For this purpose, the ring is constituted by a sleeve which is fixed around the end of a wall of the combustion chamber by means of a plurality of orifices for receiving fasteners or by means of any other system for connecting the ring to the wall. The sleeve includes at least one recess in its face facing the wall of the combustion chamber, thereby reducing the area of the sleeve that presses against the wall, and co-operating with said wall to form an open cavity in which a cooling air stream can flow.
摘要:
A gun barrel lining made of composite material having refractory fiber reinforcement and a ceramic matrix, the fiber reinforcement comprises a cylindrical inner portion constituted by a three-dimensional fiber texture and a cylindrical outer portion surrounding the inner portion and having the same axis, the outer portion being constituted by a strip wound around the inner portion, and the inner and outer portions being codensified by the ceramic matrix.
摘要:
A turbine ring assembly for a gas turbine, the assembly comprising a complete ring (10) forming a single piece of ceramic matrix composite material (CMC), a metal structure for supporting the CMC ring having metal annular supports (20, 30) between which the CMC ring is placed while allowing differential expansion at least in a radial direction between the CMC ring and the annular supports, means (40-42) for centering the CMC ring, and at least one element for preventing turning of the CMC ring about its axis.
摘要:
An annular combustion chamber has an inner wall and an outer wall of ceramic matrix composite material, together with a chamber end wall that is connected to the inner and outer walls. Elastically-deformable link elements connect the inner wall and the outer chamber walls to inner and outer metal casings. Each of the inner and outer chamber walls is subdivided circumferentially into adjacent sectors along longitudinal edges, each sector extending continuously from the end wall to the opposite end of the chamber and being folded outwards from the chamber at each of its longitudinal edges to form a portion having a U-shaped cross-section terminated by a folded-back margin that is spaced apart from the outer face of the corresponding chamber wall. The link elements are connected to the inner and outer chamber walls by being fastened to the sector margins.