摘要:
The present invention provides a method and system for handoff in a wireless communication network. In one embodiment, a common handoff encryption key is generated by an authentication server and transmitted to a first access point and a second access point. The first access point transmits the handoff encryption key to a wireless terminal. The wireless terminal encrypts output data with the handoff encryption key. When the wireless terminal is associated with the second access point, the second access point decrypts data from the wireless terminal with the handoff encryption key. In a second embodiment, a handoff WEP key generation secret parameter is provided to a first and a second access point. Both access points generate a handoff WEP key as a function of the handoff WEP key generation secret parameter and an address of a wireless terminal. The first access point transmits the handoff WEP key to the wireless terminal. The second access point communicates data packets encrypted with the handoff WEP key with the wireless terminal.
摘要:
The present invention provides a method and system for handoff in a wireless communication network. In one embodiment, a common handoff encryption key is generated by an authentication server and transmitted to a first access point and a second access point. The first access point transmits the handoff encryption key to a wireless terminal. The wireless terminal encrypts output data with the handoff encryption key. When the wireless terminal is associated with the second access point, the second access point decrypts data from the wireless terminal with the handoff encryption key. In a second embodiment, a handoff WEP key generation secret parameter is provided to a first and a second access point. Both access points generate a handoff WEP key as a function of the handoff WEP key generation secret parameter and an address of a wireless terminal. The first access point transmits the handoff WEP key to the wireless terminal. The second access point communicates data packets encrypted with the handoff WEP key with the wireless terminal.
摘要:
The present invention provides a method and system for handoff in a wireless communication network. In one embodiment, a common handoff encryption key is generated by an authentication server and transmitted to a first access point and a second access point. The first access point transmits the handoff encryption key to a wireless terminal. The wireless terminal encrypts output data with the handoff encryption key. When the wireless terminal is associated with the second access point, the second access point decrypts data from the wireless terminal with the handoff encryption key. In a second embodiment, a handoff WEP key generation secret parameter is provided to a first and a second access point. Both access points generate a handoff WEP key as a function of the handoff WEP key generation secret parameter and an address of a wireless terminal. The first access point transmits the handoff WEP key to the wireless terminal. The second access point communicates data packets encrypted with the handoff WEP key with the wireless terminal.
摘要:
The present invention provides a method and system for handoff in a wireless communication network. In one embodiment, a common handoff encryption key is generated by an authentication server and transmitted to a first access point and a second access point. The first access point transmits the handoff encryption key to a wireless terminal. The wireless terminal encrypts output data with the handoff encryption key. When the wireless terminal is associated with the second access point, the second access point decrypts data from the wireless terminal with the handoff encryption key. In a second embodiment, a handoff WEP key generation secret parameter is provided to a first and a second access point. Both access points generate a handoff WEP key as a function of the handoff WEP key generation secret parameter and an address of a wireless terminal. The first access point transmits the handoff WEP key to the wireless terminal. The second access point communicates data packets encrypted with the handoff WEP key with the wireless terminal.
摘要:
A handoff key is provided for facilitating a hand off of a wireless terminal from a first access point to a second access point. The handoff key may be generated by a server and communicated to the first and second access points. Alternatively, the handoff key may be generated one of the access points and transmitted to the other access point. The first access point may transmit the handoff key to the wireless terminal before the handoff. Shortly after the handoff, the wireless terminal and the second access point may communicate data encrypted with the handoff key. Later, an authentication server may authenticate the wireless terminal, causing the second access point to provide the wireless terminal with a session key. Thereafter, the wireless terminal and the second access point may communicate data encrypted with the session key.
摘要:
A method supports scalable and reliable multicast in a wireless network with a large bandwidth-delay product. In this method, acknowledgement packets from different receivers experiencing the same number of data packets lost are assigned the same time slots. This method can be combined with other loss recovery techniques, such as forward error correction (FEC) recovery, proactive protection, feedback suppression and collision detection. Scalability is achieved as bandwidth usage relates only to the number of packets transmitted, rather than the number of receivers.
摘要:
Disclosed herein are systems and methods for communicating a number of data flows on a single communications channel. In one embodiment, a method of communicating a number of data flows on a shared communications channel includes the acts of (1) calculating a set of optimum goodput rates for the data flows, in order to maximize a total utility of the data flows, (2) calculating a set of optimum throughput rates for the data flows based on the optimum goodput rates, and (3) transmitting the data flows on the shared communications channel with the optimized throughput rates. Optimization is preferably done using utility functions that indicate the utility of the data flows as a function of their goodput rates. The method can additionally block temporarily a transport layer of at least one of the data flows if the transport layer of that data flow is bottlenecked.
摘要:
A location update system for updating a location of a mobile terminal. The system includes a paging area with a mobile terminal present within the paging area, a domain area with the mobile terminal present within the domain area and a paging location update server that is communication with the mobile terminal and updates a location of the mobile terminal and updates the domain area.
摘要:
Channel scanning for wireless networks, such as Wireless Local Area Networks (WLANs), generally provides a wireless station with the information on the available WLAN resources, such as the frequency band and the maximum transmission power. The present invention provides safe and fast domain-aware channel scanning, enabling a wireless station to comply with applicable local regulations, in spite of the possibility of domain changes, with short channel-scanning time. Fast channel scanning is accomplished by active channel scanning if valid domain information is available and there is no possibility of domain change. Also, domain-independent channels, if any, are first scanned using active scan to get domain information faster.
摘要:
A method supports scalable and reliable multicast in a wireless network with a large bandwidth-delay product. In this method, acknowledgement packets from different receivers experiencing the same number of data packets lost are assigned the same time slots. This method can be combined with other loss recovery techniques, such as forward error correction (FEC) recovery, proactive protection, feedback suppression and collision detection. Scalability is achieved as bandwidth usage relates only to the number of packets transmitted, rather than the number of receivers.