SYNTHETIC TRAINING DATA GENERATION FOR IMPROVED MACHINE LEARNING MODEL GENERALIZABILITY

    公开(公告)号:US20220058437A1

    公开(公告)日:2022-02-24

    申请号:US16999665

    申请日:2020-08-21

    Abstract: Systems and techniques that facilitate synthetic training data generation for improved machine learning generalizability are provided. In various embodiments, an element augmentation component can generate a set of preliminary annotated training images based on an annotated source image. In various aspects, a preliminary annotated training image can be formed by inserting at least one element of interest or at least one background element into the annotated source image. In various instances, a modality augmentation component can generate a set of intermediate annotated training images based on the set of preliminary annotated training images. In various cases, an intermediate annotated training image can be formed by varying at least one modality-based characteristic of a preliminary annotated training image. In various aspects, a geometry augmentation component can generate a set of deployable annotated training images based on the set of intermediate annotated training images. In various instances, a deployable annotated training image can be formed by varying at least one geometric characteristic of an intermediate annotated training image. In various embodiments, a training component can train a machine learning model on the set of deployable annotated training images.

Patent Agency Ranking