Image segmentation method and system using GAN architecture

    公开(公告)号:US12086712B2

    公开(公告)日:2024-09-10

    申请号:US17512463

    申请日:2021-10-27

    摘要: There are provided a method and a system for image segmentation utilizing a GAN architecture. A method for training an image segmentation network according to an embodiment includes: inputting an image to a first network which is trained to output a region segmentation result regarding an input image, and generating a region segmentation result; and inputting the region segmentation result generated at the generation step and a ground truth (GT) to a second network, and acquiring a discrimination result, the second network being trained to discriminate inputted region segmentation results as a result generated by the first network and a GT, respectively; and training the first network and the second network by using the discrimination result. Accordingly, region segmentation performance of a semantic segmentation network regarding various images can be enhanced, and a very small image region can be exactly segmented.

    Method and apparatus for video coding

    公开(公告)号:US11948090B2

    公开(公告)日:2024-04-02

    申请号:US17096126

    申请日:2020-11-12

    摘要: In the present disclosure, a method for compressing a feature map is provided, where the feature map is generated by passing a first input through a deep neural network (DNN). A respective optimal index order and a respective optimal unifying method are determined for each of super-blocks that are partitioned from the feature map. A selective structured unification (SSU) layer is subsequently determined based on the respective optimal index order and the respective optimal unifying method for each of the super-blocks. The SSU layer is added to the DNN to form an updated DNN, and is configured to perform unification operations on the feature map. Further, a first estimated output is determined, where the first estimated output is generated by passing the first input through the updated DNN.