Abstract:
A premix fuel nozzle assembly includes a center body including a sleeve having an inner surface and a pilot premix fuel nozzle assembly that extends axially through the center body within the sleeve and defines a pilot air passage within the center body. The pilot premix fuel nozzle assembly includes a premix tip having a plurality of premix tubes that define premix passages in fluid communication with the pilot air passage. At least one of the premix tubes includes a fuel port. The premix fuel nozzle assembly further includes a pilot fuel flow path that is defined radially between the pilot premix fuel nozzle assembly and the inner surface of the sleeve and a fuel plenum that is at least partially defined between the sleeve inner surface and an outer surface of the premix tip. The fuel ports provide for fluid communication between the fuel plenum and the premix passages.
Abstract:
A fuel nozzle assembly having an inlet region of a fuel nozzle base assembly that provides more uniform flow of fuel within the fuel nozzle assembly. The embodiments described herein provide fuel flow conditioning components that manage fuel uniformity within a fuel annulus and make more efficient use of allocated space, thereby overcoming spatial constraints imposed on the overall fuel nozzle assembly.
Abstract:
The present application provides a fuel nozzle for use with a flow of air and a flow of fuel in a gas turbine engine. The fuel nozzle may include a plenum, a mixing tube element positioned within the plenum, and an enhanced mixing feature positioned within the mixing tube element so as to promote mixing of the flow of air and the flow of fuel. The enhanced mixing feature may include a continuous thread.
Abstract:
The present application provides a fuel nozzle for use with a flow of air and a flow of fuel in a gas turbine engine. The fuel nozzle may include a plenum, a mixing tube element positioned within the plenum, and an enhanced mixing feature positioned within the mixing tube element so as to promote mixing of the flow of air and the flow of fuel. The enhanced mixing feature may include a swirler.
Abstract:
A system for vibration damping a fuel nozzle within a combustor includes a support plate, a fuel nozzle passage that extends through the support plate and a cylindrical damping insert that is coaxially aligned within the fuel nozzle passage and at least partially defines the fuel nozzle passage. The damping insert may include a metallic-mesh liner.
Abstract:
A premix fuel nozzle assembly includes a center body including a sleeve having an inner surface and a pilot premix fuel nozzle assembly that extends axially through the center body within the sleeve and defines a pilot air passage within the center body. The pilot premix fuel nozzle assembly includes a premix tip having a plurality of premix tubes that define premix passages in fluid communication with the pilot air passage. At least one of the premix tubes includes a fuel port. The premix fuel nozzle assembly further includes a pilot fuel flow path that is defined radially between the pilot premix fuel nozzle assembly and the inner surface of the sleeve and a fuel plenum that is at least partially defined between the sleeve inner surface and an outer surface of the premix tip. The fuel ports provide for fluid communication between the fuel plenum and the premix passages.
Abstract:
A fuel nozzle assembly includes a center body having a pilot air passage and a pilot fuel passage defined therein. A pilot nozzle having a plurality of premix passages is disposed within a downstream end portion of the center body. Each premix passage includes an inlet that is in fluid communication with the pilot air passage, an outlet that is positioned axially downstream from the inlet and a fuel port that is in fluid communication with the pilot fuel passage. An outer sleeve is coaxially aligned with and radially spaced from the center body so as to define an annular passage therebetween. A strut extends radially outwardly from the center body to the outer sleeve. The fuel nozzle assembly further includes an inlet passage that is in fluid communication with the pilot air passage. The inlet passage extends through the outer sleeve, the strut and the center body.
Abstract:
The present application provides a fuel nozzle for use with a flow of air and a flow of fuel in a gas turbine engine. The fuel nozzle may include a plenum, a mixing tube element positioned within the plenum, and an enhanced mixing feature positioned within the mixing tube element so as to promote mixing of the flow of air and the flow of fuel. The enhanced mixing feature may include a turbulated mixing zone.
Abstract:
A fuel nozzle assembly includes a center body having a pilot air passage and a pilot fuel passage defined therein. A pilot nozzle having a plurality of premix passages is disposed within a downstream end portion of the center body. Each premix passage includes an inlet that is in fluid communication with the pilot air passage, an outlet that is positioned axially downstream from the inlet and a fuel port that is in fluid communication with the pilot fuel passage. An outer sleeve is coaxially aligned with and radially spaced from the center body so as to define an annular passage therebetween. A strut extends radially outwardly from the center body to the outer sleeve. The fuel nozzle assembly further includes an inlet passage that is in fluid communication with the pilot air passage. The inlet passage extends through the outer sleeve, the strut and the center body.
Abstract:
The present application provides a fuel nozzle for use with a flow of air and a flow of fuel in a gas turbine engine. The fuel nozzle may include a plenum, a mixing tube element positioned within the plenum, and an enhanced mixing feature positioned within the mixing tube element so as to promote mixing of the flow of air and the flow of fuel. The enhanced mixing feature may include a turbulated mixing zone.