Abstract:
A turbomachine blade may include an airfoil and a shank coupled to the airfoil. The shank may include a cover plate having a first circumferential face and a second, opposing circumferential face. A radial cooling groove is positioned in the first circumferential face and is configured to allow a cooling fluid to pass from a first radial position to a second, different radial position relative to the platform. The radial cooling groove provides cover plate and shank cooling. In addition, the radial cooling groove may deliver fluid for purging gaps between blade platforms and cover plates, which prevents the ingestion of hot gas from the turbine flowpath.
Abstract:
A seal configuration includes a housing and a rotatable member rotationally mounted relative to the housing. The rotatable member has at least one portion defining an outer perimetrical face that is configured to contact the housing during operational conditions that cause a radial dimension of the at least one portion to increase. The at least one portion has opposing axial surfaces with each of the opposing axial surfaces being dimensionally axially nearer to the other of the opposing axial surfaces immediately radially inwardly of the outer perimetrical face than a furthest part of the outer perimetrical face.
Abstract:
A seal configuration includes a housing and a rotatable member rotationally mounted relative to the housing. The rotatable member has at least one portion defining an outer perimetrical face that is configured to contact the housing during operational conditions that cause a radial dimension of the at least one portion to increase. The at least one portion has opposing axial surfaces with each of the opposing axial surfaces being dimensionally axially nearer to the other of the opposing axial surfaces immediately radially inwardly of the outer perimetrical face than a furthest part of the outer perimetrical face.
Abstract:
Embodiments of the present disclosure include a cooling supply circuit within a turbine wheel, which may include: a substantially axial passage configured to communicate air along an axial length of the turbine wheel; a substantially radial inlet positioned within the turbine wheel between a hollow interior of the turbine wheel and the substantially axial passage, the inlet being configured to direct a rotor purge air into the substantially axial passage; and a substantially radial outlet positioned within the turbine wheel between the substantially axial passage and a cooled component coupled to a radial exterior of the turbine wheel, the outlet being configured to direct the rotor purge air towards the cooled component, wherein the outlet is axially displaced from the inlet.
Abstract:
A seal configuration includes a housing and a rotatable member rotationally mounted relative to the housing. The rotatable member has at least one portion defining an outer perimetrical face that is configured to contact the housing during operational conditions that cause a radial dimension of the at least one portion to increase. The at least one portion has opposing axial surfaces with each of the opposing axial surfaces being dimensionally axially nearer to the other of the opposing axial surfaces immediately radially inwardly of the outer perimetrical face than a furthest part of the outer perimetrical face.
Abstract:
A turbomachine blade may include an airfoil and a shank coupled to the airfoil. The shank may include a cover plate having a first circumferential face and a second, opposing circumferential face. A radial cooling groove is positioned in the first circumferential face and is configured to allow a cooling fluid to pass from a first radial position to a second, different radial position relative to the platform. The radial cooling groove provides cover plate and shank cooling. In addition, the radial cooling groove may deliver fluid for purging gaps between blade platforms and cover plates, which prevents the ingestion of hot gas from the turbine flowpath.
Abstract:
A seal configuration includes a housing and a rotatable member rotationally mounted relative to the housing. The rotatable member has at least one portion defining an outer perimetrical face that is configured to contact the housing during operational conditions that cause a radial dimension of the at least one portion to increase. The at least one portion has opposing axial surfaces with each of the opposing axial surfaces being dimensionally axially nearer to the other of the opposing axial surfaces immediately radially inwardly of the outer perimetrical face than a furthest part of the outer perimetrical face.
Abstract:
Embodiments of the present disclosure include a cooling supply circuit within a turbine wheel, which may include: a substantially axial passage configured to communicate air along an axial length of the turbine wheel; a substantially radial inlet positioned within the turbine wheel between a hollow interior of the turbine wheel and the substantially axial passage, the inlet being configured to direct a rotor purge air into the substantially axial passage; and a substantially radial outlet positioned within the turbine wheel between the substantially axial passage and a cooled component coupled to a radial exterior of the turbine wheel, the outlet being configured to direct the rotor purge air towards the cooled component, wherein the outlet is axially displaced from the inlet.