Abstract:
A power conversion system is disclosed including a DC bus for receiving DC power, a power converter for converting the DC power to AC power, and a controller. The controller includes an active power regulator for generating a phase angle command signal, a reactive power regulator for generating a voltage magnitude command, and an active power (P) and reactive power (Q) decoupling unit for decoupling interaction between the active and reactive power regulators. The PQ decoupling unit includes an active power compensation element and a reactive power compensation element. The active power compensation element is used for generating a phase angle compensation signal based on a reactive power error signal, to compensate the phase angle command signal. The reactive power compensation element is used for generating a voltage magnitude compensation signal based on an active power error signal, to compensate the voltage magnitude command signal.
Abstract:
The present invention discloses a power generation system including a double-fed induction generator, a power converter, and a controller. The double-fed induction generator includes a rotor and a stator coupled to a grid. The power converter includes a rotor side converter coupled to the rotor of the generator, a grid side converter coupled to the grid, and a DC bus coupled between the rotor side converter and the grid side converter. The controller includes a rotor side controller for controlling the rotor side converter and a grid side controller for controlling the grid side converter. The rotor side controller includes a compensator having a transfer function and configured to counter a negative resistance effect of the generator to suppress sub-synchronous oscillations. The present invention further discloses a system for suppressing sub-synchronous oscillations and a method for controlling operation of a power system.
Abstract:
A protection circuit for a controllable switch comprising a control terminal, a first terminal, and a second terminal having a lower electric potential than the first terminal, the protection device comprising: an active clamping module, coupled between the first terminal and the control terminal of the controllable switch, configured to clamp a first voltage across the first terminal and the second terminal; and a damping module, coupled to an output of the active clamping module and configured to damp oscillations of a second voltage across the control terminal and the second terminal. Embodiments of the present disclosure also relate to a protection method for a controllable switch.