Abstract:
A method of compressed sensing for multi-shell magnetic resonance imaging includes obtaining magnetic resonance imaging data, the data being sampled along multi-shell spherical coordinates, the spherical coordinates coincident with a plurality of spokes that converge at an origin, constructing a symmetric shell for each respective sampled multi-shell to create a combined set of data, performing a three-dimensional Fourier transform on the combined set of data to reconstruct an image, and de-noising the reconstructed image by iteratively applying a sparsifying transform on non-sampled data points of neighboring shells. The method can also include randomly under-sampling the imaging data to create missing data points. A system configured to implement the method and a non-transitory computer readable medium are also disclosed.
Abstract:
A magnetic resonance imaging method includes generating spatially resolved fiber orientation distributions (FODs) from magnetic resonance signals acquired from a patient tissue using a plurality of diffusion encodings, each acquired magnetic resonance signal corresponding to one of the diffusion encodings and being representative of a three-dimensional distribution of displacement of magnetic spins of gyromagnetic nuclei present in each imaging voxel. Generating the spatially resolved FODs includes performing generalized spherical deconvolution using the acquired magnetic resonance signals and a modeled tissue response matrix (TRM) to reconstruct the spatially resolved FODs. The method also includes using the spatially resolved FODs to generate a representation of fibrous tissue within the patient tissue.
Abstract:
A magnetic resonance (MR) imaging method includes acquiring MR signals having phase and magnitude at q-space locations using a diffusion sensitizing pulse sequence performed on a tissue of interest, wherein the acquired signals each include a set of complex Fourier encodings representing a three-dimensional displacement distribution of the spins in a q-space location. The signals each include information relating to coherent motion and incoherent motion in the q-space location. The method also includes determining a contribution by coherent motion to the phase of the acquired MR signals; removing the phase contribution attributable to coherent motion from the acquired MR signals to produce a complex data set for each q-space location and an image of velocity components for each q-space location; and producing a three-dimensional velocity image from the image of the velocity components.
Abstract:
Systems and methods for generating a magnetic resonance (MR) image of a tissue are provided. A method includes acquiring MR raw data. The MR raw data corresponds to MR signals obtained at undersampled q-space locations for a plurality of q-space locations that is less than an entirety of the q-space locations and the MR signals at the q-space locations represent the three dimensional displacement distribution of the spins in the imaging voxel. The method also includes performing a joint image reconstruction technique on the MR raw data to exploit structural correlations in the MR signals to obtain a series of accelerated MR images and performing, for each image pixel in each accelerated MR image of the series of accelerated MR images, a compressed sensing reconstruction technique to exploit q-space signal sparsity to identify a plurality of diffusion maps.
Abstract:
Systems and methods for generating a magnetic resonance (MR) image of a tissue are provided. A method includes acquiring MR raw data. The MR raw data corresponds to MR signals obtained at undersampled q-space locations for a plurality of q-space locations that is less than an entirety of the q-space locations and the MR signals at the q-space locations represent the three dimensional displacement distribution of the spins in the imaging voxel. The method also includes performing a joint image reconstruction technique on the MR raw data to exploit structural correlations in the MR signals to obtain a series of accelerated MR images and performing, for each image pixel in each accelerated MR image of the series of accelerated MR images, a compressed sensing reconstruction technique to exploit q-space signal sparsity to identify a plurality of diffusion maps.
Abstract:
A magnetic resonance imaging method includes generating spatially resolved fiber orientation distributions (FODs) from magnetic resonance signals acquired from a patient tissue using a plurality of diffusion encodings, each acquired magnetic resonance signal corresponding to one of the diffusion encodings and being representative of a three-dimensional distribution of displacement of magnetic spins of gyromagnetic nuclei present in each imaging voxel. Generating the spatially resolved FODs includes performing generalized spherical deconvolution using the acquired magnetic resonance signals and a modeled tissue response matrix (TRM) to reconstruct the spatially resolved FODs. The method also includes using the spatially resolved FODs to generate a representation of fibrous tissue within the patient tissue.
Abstract:
A method of compressed sensing for multi-shell magnetic resonance imaging includes obtaining magnetic resonance imaging data, the data being sampled along multi-shell spherical coordinates, the spherical coordinates coincident with a plurality of spokes that converge at an origin, constructing a symmetric shell for each respective sampled multi-shell to create a combined set of data, performing a three-dimensional Fourier transform on the combined set of data to reconstruct an image, and de-noising the reconstructed image by iteratively applying a sparsifying transform on non-sampled data points of neighboring shells. The method can also include randomly under-sampling the imaging data to create missing data points. A system configured to implement the method and a non-transitory computer readable medium are also disclosed.
Abstract:
A magnetic resonance (MR) imaging method includes acquiring MR signals having phase and magnitude at q-space locations using a diffusion sensitizing pulse sequence performed on a tissue of interest, wherein the acquired signals each include a set of complex Fourier encodings representing a three-dimensional displacement distribution of the spins in a q-space location. The signals each include information relating to coherent motion and incoherent motion in the q-space location. The method also includes determining a contribution by coherent motion to the phase of the acquired MR signals; removing the phase contribution attributable to coherent motion from the acquired MR signals to produce a complex data set for each q-space location and an image of velocity components for each q-space location; and producing a three-dimensional velocity image from the image of the velocity components.