Abstract:
A rearview display system is provided for a vehicle having: a rear camera generating a rearward video stream, a right-side camera generating a right-side stream, and a left-side camera generating a left-side stream. The system includes a processing circuit for generating a composite video stream from: (a) the rearward stream and the right-side stream, (b) the rearward stream and the left-side stream, and (c) at least the rearward stream. When the composite stream is formed from the rearward stream and the right-side stream, the rearward stream extends across the whole composite stream with the exception of a right corner where the right-side stream is superimposed over the rearward stream. When the composite stream is formed from the rearward stream and the left-side stream, the rearward stream extends across the whole composite stream with the exception of a left corner where the left-side stream is superimposed over the rearward stream.
Abstract:
A vehicle monitoring system is configured to monitor a scanning region depicting a subject and includes a monitoring apparatus configured to capture scanning data in the scanning region depicting the subject. A feedback apparatus is configured to communicate alignment information from a portion of the vehicle to the subject. The alignment information indicates an alignment of the subject in the scanning region. A concealment apparatus is configured to conceal the scanning apparatus and selectively transmit the alignment information from the feedback apparatus. The system further includes a controller configured to activate the feedback apparatus revealing the alignment information identifying the alignment of the subject within the scanning region of the monitoring apparatus. The controller is further configured to control the scanning apparatus to capture the scanning data of the subject and monitor the subject in the scanning data.
Abstract:
An imager module for a vehicle includes an imager having an imager lens. The imager is configured to collect image data from at least one of inside and outside the vehicle. A cover is disposed proximate the imager lens and configured to allow the imager to capture image data through the cover. The cover is operable between a first condition, wherein the imager is generally visible through the cover, and a second condition, wherein the imager is generally concealed from view by the cover.
Abstract:
A display mirror assembly for a vehicle includes a partially reflective, partially transmissive element; and a full display module mounted behind the partially reflective, partially transmissive element, the display module having an optic block, and a display in optical communication with the optic block, the display being one an in-place switching liquid crystal display, a fringe filed switching liquid crystal display, and a vertically aligned liquid crystal display.
Abstract:
A display mirror assembly for a vehicle includes a front shield having a first side and a second side. A partially reflective, partially transmissive element is mounted on the first side. A rear shield is disposed behind the front shield. A display module is mounted between the front shield and the rear shield and includes in order from the front shield: a display; an optic block; a heat sink having an edge lit PCB mounted along a top edge thereof; and a PCB. The front shield is secured to at least one component of the display module with a first retaining feature and the rear shield is secured to at least one component of the display module with a second retaining feature. A housing at least partially surrounds the partially reflective, partially transmissive element, the front shield, carrier plate, display module, and rear shield.
Abstract:
A display system for use in a controlled vehicle is provided, and includes a rearview assembly having a display device located behind a mirror element, a camera system configured to acquire images of a scene external of the controlled vehicle, and a processing system configured to receive a signal representative of the acquired images and to produce an image of the scene on the display device of the rearview assembly, wherein the processing system is further configured to adjust the photosensitivity of the camera system based on an input from at least one of an ambient light sensor and a direct glare sensor.
Abstract:
This application is directed to a rearview assembly. The rearview assembly may have a support member, a camera, a backlight, and/or a display. The support member may be substantially transparent to infra-red light. The camera may be disposed in a first direction relative the support member and configured to capture one or more infra-red images. The backlight may comprise a light guide and an edge light configured to emit light into an edge of the light guide. The light guide may be configured to direct the light in a second direction. The second direction may be opposite the first direction. The display may be associated with and supported by the backlight and support member. Further, the display may be disposed in the second direction relative the backlight, configured to receive light from the backlight, and configured to present one or more images for viewing by a user.
Abstract:
An optical module for a vehicle includes an imager configured to collect image data from at least one of inside and outside the vehicle. A cover is disposed proximate a lens of the imager. The cover includes an electro-optic cell aligned with the lens and configured to allow the imager to capture the image data through the cover. The cover is colored to match one of an interior and exterior body panel of the vehicle. The electro-optic cell is operable between a first condition wherein the electro-optic cell has a visible light transmission of greater than 50% and a second condition wherein the visible light transmission of the electro-optic cell is less than 15%.
Abstract:
A display system for use in a vehicle is disclosed including an imager configured to capture images corresponding to a field of view rearward of the vehicle. The imager is in communication with a processing unit configured to receive data representative of the captured images from the imager. A display is in communication with the processing unit which is configured to display images based on the data representative of the captured images received by the processing unit. The processing unit is configured to receive vehicle operating data from the vehicle and data corresponding to a detection of an object in proximity of the vehicle. In response to the vehicle operating data and the object detected, the processing unit is configured to control the field of view of the at least one imager.
Abstract:
A display mirror assembly for a vehicle includes an electrochromic cell, a switchable reflective element, a display module, an ambient light sensor, and a controller. The controller automatically selects a display mode or a mirror mode in response to a detected ambient light level. In a display mode, the controller activates the display module, sets the switchable reflective element to a low reflection mode, and sets the electrochromic cell to a clear state with minimum attenuation. In a mirror mode, the controller deactivates the display module, sets the switchable reflective element to a high reflection mode, and varies attenuation by the electrochromic cell.