Abstract:
An externally-oriented internally-corrected perforating gun system and method for accurate perforation in a deviated wellbore is disclosed. The system/method includes a gun string assembly (GSA) deployed in a wellbore with an external protuberance member (EPM) and an internal pivot support (IPS). With the EPM oriented to the high side of the wellbore, the center of mass of the GSA positions the GSA at the lower side of the wellbore surface. The IPS is attached to internal gun components such end plate, charge holder tube, detonating cord or charge case. The charges inside the charge holder tube move with the gravitational vector about the IPS and point more accurately in the desired direction for perforating. The external orientation of the EPM along with limited internal swing about the IPS provide for an accurate orientation of the charges that results in efficient and effective perforating through a hydrocarbon formation.
Abstract:
A limited entry perforating phased gun system and method for accurate perforation in a deviated/horizontal wellbore is disclosed. The system/method includes a gun string assembly (GSA) deployed in a wellbore with shaped charge clusters. The charges are spaced and angled such that, when perforated, they intersect at a preferred fracturing plane. Upon fracturing, the fractures initiate at least principal stress location in a preferred fracturing plane perpendicular to the wellbore from an upward and downward location of the wellbore. Thereafter, the fractures connect radially about the wellbore in the preferred fracturing plane. The fracture treatment in the preferred fracturing plane creates minimal tortuosity paths for longer extension of fractures that enables efficient oil and gas flow rates during production.